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Summary: Higher level cognitive processes such as learning and mental models 
play a fundamental role in the success of automated driving, as technology can only 
be as good as our understanding and expectations of it. The present study 
investigated the development of these processes during interactions with driving 
automation. In a driving simulator study, N=52 participants completed several 
transitions between manual and Society of Automotive Engineers (SAE) levels 2 
and 3 automated driving. Self-reported learning progress and mental model 
development were assessed via questionnaires. In parallel, eye-tracking data were 
collected as a behavioral measure of higher level cognitive functions. The results 
demonstrated that self-reported learning and gaze behavior followed a power-law 
function; the power-law functions showed task specific parameter manifestations. 
The evolution of the mental models of the level 2 and level 3 human-machine 
interface continued up to the fifth contact, indicating a long lasting process. For 
researchers and practitioners, the present study implies that accurate mental models 
require up to 5 repeated interactions. Furthermore, learning progress with driving 
automation can be captured through gaze behavior.  

 
INTRODUCTION 
 

With the feasibility of automated driving functions and their accompanying proliferation of 
Human-Machine Interfaces (HMI), in recent years research has increasingly focused on the 
methodological aspects (Naujoks, Hergeth, Wiedemann, Schömig, & Keinath, 2018) of 
evaluating these HMIs for levels 2 (L2) and 3 (L3) automated driving (SAE, 2018). The present 
study’s objective is to gain insight into the development of higher level cognitive processes when 
interacting with driving automation. This is crucial in the successful development of automated 
driving as the evaluation of interfaces frequently only applies initial contact (Forster, Naujoks, & 
Neukum, 2016; Frison, Wintersberger, Riener, & Schartmüller, 2017/2017). However, if users 
have not yet fully understood the system, their self-reported evaluation of the system in question 
might be unreliable and therefore invalid (Beggiato, Pereira, Petzoldt, & Krems, 2015). The 
present work contributes to the refinement of research methods by (1) examining the behavioral 
measures describing the learning process and (2) investigating the development of the mental 
model for L2 and L3 automated driving. 
 

Background 
 

There remains a dearth of research on the development of higher level cognitive processes when 
interacting with L2 and L3 driving automation. A study by Beggiato et al. (2015) for L1 driving 
automation illustrated that learning, trust and acceptance can be applied in accordance with the 
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power law of learning (Newell & Rosenbloom, 1981). The power law is a function with the 
general form of: 

ܲሺܰ|ܽ, ܾ, ܿሻ ൌ ܽ ൅ ܾ ∗ ܰ	ି௖    (1) 

The predicted performance P is a function of the number of trials N given the three parameters a, 
b and c. Parameter a is the asymptote of P with N increasing indefinitely; parameter b describes 
the amplitude of learning between the initial performance and asymptotical performance; 
parameter c is the learning rate. Beggiato et al. (2015) investigated higher level cognitive 
processes by means of the mental model; they found that it takes up to ten repeated encounters 
with the system for an accurate mental model to evolve. 
 

Besides self-reported measures on learning and the mental model, eye-tracking metrics allow 
researchers an insight into higher level cognitive processes at the behavioral level (Just & 
Carpenter, 1984). The present experiment therefore examined gaze behavior to discover whether 
it could be used to capture the evolution of self-reported learning and mental models in 
automated driving. Empirical support for this consideration comes from Sarter, Mumaw, and 
Wickens (2007) who revealed a connection between the mental model and gaze behavior in 
pilots interacting with flight automation. Similarly, Underwood (2007) observed a lack of both 
adequacy of mental models and efficiency of visual scanning with inexperienced users. Besides 
differences in scanning behavior with repeated exposure, there is evidence that gaze behavior is 
task-dependent (Hayhoe & Ballard, 2005). Due to differences in activation conditions between 
levels of automation (SAE, 2018), the present study aims to investigate gaze behavior in 
different transitions (Naujoks et al., 2018). 
 

Bridging the gap between self-reported higher level cognitive processes (Beggiato et al., 2015) 
and behavioral measures (Sarter et al., 2007) the current research aims at a comprehensive 
examination in the area of L2 and L3 automated driving. 
 
Research Questions and Hypotheses 
 

Based on the aforementioned considerations and prior research, we derived two research 
questions: First, how do self-reported measures of higher level cognitive processes evolve over 
time while interacting with driving automation? To answer this question, we assume that self-
reported learning of the interaction follows the power law of learning (Hypothesis 1a). 
Furthermore, repeated interaction should lead to more accurate mental models (Hypothesis 1b). 
 

Second, how do behavioral measures of higher level cognitive processes evolve after repeated 
interactions with driving automation? Concerning this question, we expect the number of gaze 
changes between different areas of interest (AOI) to follow the power law (Hypothesis 2a). The 
development of gaze behavior should additionally proceed in in a task-dependent manner 
(Hypothesis 2b). 
 
METHODS 
 

Driving Simulator 
 

The study was conducted in a high-fidelity moving-base driving simulator. The BMW 5 series 
vehicle mock-up contained a complete instrumentation. Seven 1080p projectors provided a 240° 
horizontal × 45° vertical frontal field of view. One LCD screen positioned behind the back seats 
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and two outside projections with the same specifications served as the driver’s rear view. The 
motion system consisted of a hexapod with six degrees of freedom, capable of up to 7 m/s² 
transitional acceleration and 4.9 m/s² continuous acceleration. The Surrogate Reference Task 
(ISO, 2012) was displayed on a 12.3” tablet mounted on the center stack console. 
 
Design and Procedure 
 

The present work reports the results of the within-subject factor “expertise” with five levels (Use 
Case repetition from block 1 – 5). 
Prior to the experimental drive, the experimenter outlined the procedure and explained that 
participants would encounter two automated systems (i.e., L2, L3). They also received 
information stating that they would not have to constantly monitor the correct functioning of the 
L3 automated driving system (ADS). No specific additional information about the six items of 
the mental model questionnaire was given. Prior to each block, participants were instructed that 
they could decide for themselves whether to engage in a non-driving related task (NDRT) when 
the automation was active. The subsequent experimental drive included five experimental 
blocks, each with six interactions between the driver and the driving automation. After each 
block, participants completed the block inquiry. Subsequent to a 5 minute familiarization drive, 
the experimental drive on a three-lane highway with moderate traffic density lasted 
approximately 60 minutes.  
 
Driving Automation and Human-Machine Interface 
 

As soon as the driver activated the L2 or L3 system, it carried out longitudinal and lateral vehicle 
guidance. The functioning performance of the L2 and L3 automation was identical. During both 
L2 and L3 automated driving, the visual HMI on the instrument cluster displayed the vehicle and 
its surroundings. This was based on prior research (Forster et al., 2016; Manca, Winter, & 
Happee, 2015) and thus represents a prototypical solution. The driving automation systems could 
be activated with buttons on the left-hand side of the steering wheel. The L2 driving automation 
could be activated at any time while driving. For the L3 ADS, however, there were several 
activation conditions (SAE, 2018); these were (1) the availability of the ADS, (2) a velocity 
below 130 km/h and (3) keeping in line according to a certain lateral margin. 
 
Use Cases 
 

The current experiment included driver initiated transitions between manual, L2 and L3 
automated driving based on (Naujoks et al., 2018). Use cases (UC) were automated transitions 
from L0 to L3 (UC1), and from L0 to L2 (UC2). In addition, we implemented transitions from 
L2 to L3 (UC3) and vice versa (UC4). Each block included two transitions to manual (i.e., from 
L2 and L3). The transitions to manual were not analyzed here since the desired system state does 
not represent a driving automation system. To counteract the experiment’s sequential effects, 
participants were randomly assigned to one of six possible block sequences created using a Latin 
square. To standardize the instructions, we recorded samples for each UC that were triggered by 
the experimenter. UCs with a transition to L3 (UC1 and UC3) also included a 10-second delay 
between the experimenter’s instruction and the availability of the L3 ADS. Within this 10-second 
window, the L3 ADS could not be activated. 
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Dependent Variables 
 
The mental model questionnaire and items for self-reported learning developed by Beggiato et al. 
(2015) were adapted for L2 and L3 driving automation. Participants completed the questionnaire 
after receiving instructions on how to do so, and then again after each experimental block. Self-
reported learning was measured with four items on a visual analogue scale ranging from 0-100. 
The mental model questionnaire included 11 items on a 7-point Likert scale ranging from 1 
(“strongly disagree”) to 7 (“strongly agree”) for both the L2 and L3 automation. Six items 
covered participants’ understanding of the system, while five items served as distractors. Items 
were specifically derived to detect differences between L2 and L3. Thus, for each item of 
interest, the opposite end of the scale was correct for the two levels of automation. If “strongly 
disagree” was the correct answer for L2, “strongly agree” was correct for L3 and vice versa. 
 

Gaze data were collected with Dikablis 2.5. Prior to analysis, data quality was ensured by 
manually recoding all relevant sections. AOIs (i.e., driving scene, instrument cluster, operating 
element, NDRT) were defined in D-Lab 2.5. Gaze behavior was analyzed from the onset of the 
standardized experimenter instructions until a UC was solved; a UC was solved successfully if a 
desired system state was constant for at least five seconds without unintended deactivations or 
interruptions. For each UC, the number of gaze switches between AOIs was calculated. Two or 
more glances at the same AOI that were separated by less than 150ms were combined. Glances 
shorter than 150ms on an AOI were eliminated from the analysis (Irwin, 1992). 
 
Sample 
 

A total of N=59 participants took part in the driving simulation experiment. Two participants 
could not finish the experiment due to simulator sickness and five incomplete datasets were 
excluded. This left N=52 (14 female, 38 male) participants for data analysis. The mean age of the 
final sample was 31.88 years (SD=10.09, MAX=62, MIN=20). Participants were recruited among 
BMW Group employees, held a German driver’s license and had normal or corrected to normal 
vision. 
 
RESULTS 
 

Model fits of the power law for self-reported learning (see Figure 1 and Table 1) demonstrated a 
steep increase from the prior assessment to the first block and a subsequent slight increase up to 
the fifth block. Self-reported learning stabilized at a considerably high level, indicating that 
participants were subjectively familiar with the system. 
 

The change in total gaze switches between AOIs (Figure 2 and Table 2) over time showed that 
participants’ gaze behavior adhered to the power law of learning. Each UC showed a specific 
learning pattern: There were lower asymptotes for the transitions to L2 automation (UC2, UC4) 
than for transitions to L3 (UC1, UC3). The highest learning rate and amplitude was observed in 
the transition from manual to L2 automation (UC2), while the lowest amplitude was observed in 
the transition from L2 to L3 automation (UC3). The transition from L3 to L2 automation (UC4) 
took the longest to stabilize in terms of gaze behavior, which is reflected in its considerably low 
learning rate of 1.217. 
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Table 1. Model fit equations and goodness-of-fit 
indices (R², RMSE) for self-reported learning 

Table 2. Model fit equations and goodness-of-fit 
indices (R², RMSE) for gaze switches by UC 

 Power Law R² RMSE 

Learning 1 N=86.58-55.36*t -1.825 .9983 1.0924 

Learning 2 N=87.93-45.58*t -1.447 .9965 1.4659 

Learning 3 N=85.18-42.27*t -1.278 .9954 1.2903 

Learning 4 N=84.23-51.94*t -1.324 .9920 2.0737 
 

 Power Law R² RMSE 

Use Case 1 P=24.16+18.53*t-2.818 .9765 1.7311 

Use Case 2 P=10.41+33.71*t-4.805 .9997 0.3519 

Use Case 3 P=21.72+9.54*t-3.000 .9921 0.5146 

Use Case 4 P=6.13+25.42*t-1.217 .9975 0.6307 
 

  
Figure 1. Self-reported learning (M, SE) and 

according power-law fit 
Figure 2. Number of gaze switches (M, SE) and 

according power-law fit 

The results for the mental model questionnaire revealed that development occurs up to the fifth 
block (see Figure 3). With increasing experience, participants could better discriminate between 
L2 and L3, as indicated by rising mean differences between the two automation levels. The 
rising accuracy of the mental models is reflected in the differences between both systems, as well 
as in smaller mean distances towards their respective ends of the scale. System monitoring 
related items (i.e., Items 3, 5) already showed large differences between L2 and L3 before the 
first block. Three variables showed a steadily increasing difference (i.e., Items 1, 4, 6). A 
difference in the relevance of lane keeping (Item 2) emerged after the fourth block of 
interactions. After five blocks, there was still room for improving the mental model, as indicated 
by distances between the mental model mean and the correct answer (1 or 7, respectively). 

 

 
Figure 3. Mental model questionnaire results (i.e., M, SE) by automation level and expertise 
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DISCUSSION AND CONCLUSIONS 
 

The objective of this study was to examine the effect of increasing practice on higher level 
cognitive processes at both the self-reported and behavioral levels. The results for the 
development of both measures over time confirmed Hypotheses 1a and 2a. Both the self-reported 
learning and the number of gaze switches between AOIs followed the power-law of learning and 
demonstrated sufficient goodness-of-fit (see Tables 1 and 2). The decrease and subsequent 
stabilization of the number of transitions between the AOIs across all UCs indicates that 
scanning efficiency increased. Driving automation users thus seem to improve their visual 
scanning behavior over time (Underwood, 2007). In addition, the different model fits for the four 
transitions found in this study support the task-dependency of gaze behavior (Hayhoe & Ballard, 
2005). This result supports Hypothesis 2b, as each transition poses different demands to the 
human operator: Transitions with ongoing manual vehicle guidance (UC1, UC2) exhibited more 
learning compared to transitions between two levels of automation (UC3, UC4). This result 
emphasizes that the design process should focus on the task-specific requirements of control 
transitions. Future research should therefore examine the dispersion of visual attention allocation 
in transitions between automation levels more closely. 
 

The mental model results support Hypothesis 1b. While participants could not effectively 
discriminate between L2 and L3 automation before using automated driving, subsequent 
interactions improved the accuracy of their mental model (see Figure 3). Accordingly, 
researchers and practitioners in the field of automated driving need to consider that accurate 
mental models require repeated interactions, even after operational behavior has reached a 
constant level. Even after five repetitions, there were still participants that did not have an 
accurate mental model. The difference between L2 and L3 automation was not evident to many 
participants during their first interactions; for example, the relevance of lane keeping for 
transitions in L3 took up to four repetitions to become even slightly apparent (see Figure 3, Item 
2). Despite the apparent simplicity of interacting with the system (e.g., pressing a button to 
activate it), these results emphasize the difficulty and long-lasting process of building accurate 
mental models. As the present experiment only included L2 and L3 automated driving, this effect 
is proposed to be even stronger with additional automation functions (e.g., L1, L4). The present 
work supports prior evidence that mental models for driving automation are slow to evolve 
(Beggiato et al., 2015). In automated driving research, the interpretation of self-reported 
satisfaction with driving automation must consider that these evaluations were provided during a 
phase in which the participants’ understanding of the system was still evolving (Forster et al., 
2016; Frison et al., 2017/2017). Future research efforts are necessary to identify the impact of 
rising experience with and accuracy of mental models on the development of self-reported 
satisfaction with HMIs for automated driving. 
 

This study provided the first evidence of the development of attention allocation; however, the 
total number of switches between AOIs failed to consider a decrease in the time participants 
spent on task with rising experience. Therefore, future analysis should evaluate behavioral 
measures in relation to the respective task duration. In addition, the switches between AOIs did 
not investigate attention allocation to single AOIs. The open question remains how the 
importance of AOIs changes over time, which is reflected in monitoring frequency (Jacob & 
Karn, 2003). Besides these concerns, the present work supports the operationalization of learning 
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through gaze behavior and provides the literature with an insight into the long-lasting process of 
mental model evolution in automated driving. 
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