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Summary: Humans, as both pedestrians and drivers, generally skillfully navigate 
traffic intersections. Despite the uncertainty, danger, and the non-verbal nature of 
communication commonly found in these interactions, there are surprisingly few 
collisions considering the total number of interactions. As the role of automation 
technology in vehicles grows, it becomes increasingly critical to understand the 
relationship between pedestrian and driver behavior: how pedestrians perceive the 
actions of a vehicle/driver and how pedestrians make crossing decisions. The 
relationship between time-to-arrival (TTA) and pedestrian gap acceptance (i.e., 
whether a pedestrian chooses to cross under a given window of time to cross) has 
been extensively investigated. However, the dynamic nature of vehicle trajectories 
in the context of non-verbal communication has not been systematically explored. 
Our work provides evidence that trajectory dynamics, such as changes in TTA, can 
be powerful signals in the non-verbal communication between drivers and 
pedestrians. Moreover, we investigate these effects in both simulated and real-
world datasets, both larger than have previously been considered in literature to the 
best of our knowledge. 
 

 

   

         (a) Example video frame of the forward roadway.   (b) Pedestrian and vehicle detection via YOLO v3. 
Figure 1. Example video frame and detection of vehicles and pedestrians from the MIT-AVT naturalistic 

driving dataset Fridman et al. (2017) 
 

 
INTRODUCTION 
 
As experienced human drivers, we take for granted our ability to reason about pedestrians’ 
movements, intents, mental models, and conflict resolution dynamics. As pedestrian, vehicle 
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passengers, and vehicle drivers, we quickly develop the necessary perceptual capabilities such as 
foresight into whether a pedestrian is likely to cross the street and the ability to communicate 
with pedestrians in explicit, non-verbal ways. As an illustration, consider a situation in which 
someone is driving through a bustling street in downtown Boston. The driver spots a pedestrian 
on the sidewalk in the middle of a city block walking towards the curb. She notices the 
pedestrian is looking in her direction. The pedestrian pauses, but then the driver decelerates. The 
pedestrian then jaywalks (crosses outside a crosswalk) across the street in front of the vehicle. 
While banal, this example encourages us to ask: (1) to what extent did the driver’s influenced the 
pedestrian’s decision to cross and (2) how the driver was able to reason about the interaction. To 
design vehicle automation that operates safely and efficiently in urban environments with an 
awareness of pedestrians, we will need answers to the above questions. In this paper, we 
investigate (1) the relationship between vehicle trajectories and pedestrian crossing decisions and 
(2) people’s ability to update their estimates of a vehicle’s time to arrival (TTA) when vehicles 
accelerate. 
 
Previous work has recorded the TTA between vehicles and pedestrians at the moment 
pedestrians begin to cross the street. In 1953, Moore (1953) first showed evidence that speed and 
distance influence when pedestrians decide to cross and in 1955, Cohen et al. (1955) began 
investigating TTA. More recently, Brewer et al. (2006) found that 85% gap acceptances (i.e., 
instances where pedestrians choose to cross) fall between 5.3 and 9.4 seconds. While these 
studies have provided valuable information and models about real-world crossing behavior, to 
design robust safety systems and vehicle automation, it’s important to understand how dynamics 
of trajectories, as opposed to a static notion of TTA, relate to pedestrian decision making. 
In order to understand pedestrian-vehicle interaction in greater depth we investigated behaviors 
both in a dynamic real-world environment and through simulation that considers dynamic 
trajectories. We perform our analysis on two large-scale datasets. 
 
METHODS 
 
Large-Scale Naturalistic Data Analysis 
 
Vehicle kinematics data originated from an approximately 200,000 mile subset of the MIT-AVT 
naturalistic driving dataset (Fridman, 2018; Fridman et al., 2017). The dataset includes data from 
Greater Boston area drivers in vehicles equipped with automation technologies throughout 
medium (1 month) and long-term (over a year) observations. This dataset contains video, vehicle 
kinematics, and various messages from a vehicle’s systems. The video data include 720p 30fps 
video of (1) the forward roadway, (2) the driver’s face, and (3) the instrument cluster. Vehicle 
kinematic data include odometer, speedometer, and steering angle information recorded via the 
vehicle’s CAN bus diagnostic port as well as GPS and IMU data collected via an installed data 
collection system. Signals from a vehicle’s computer include previously mentioned kinematic 
data, whether the brake was activated when a forward collision warning occurred etc.; a data 
collection system recorded these signals via a CAN diagnostic port. For this study, we used 
video of the forward roadway, vehicle kinematics, and GPS data. To ensure the integrity of our 
analyses, all data were synchronized to video frames of the forward roadway. See Fig. 1 for 
examples of forward roadway video frames and detections of pedestrians and vehicles. 
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Figure 2. TTA in seconds. All trajectories are aligned on the frame the pedestrian entered the path of 
the oncoming vehicle. 

 

In order to study how vehicle kinematics influence pedestrian behavior at intersections, we 
needed to extract and annotate instances of short interactions between drivers and pedestrians. 
Below, we outline a pipeline which involves (1) a kinematics-based filter which excludes most 
highway driving (2) a computer vision approach which extracts situations in which pedestrians 
likely crossed the street, (3) a manual filter which selects only those interactions that fall within a 
set of study criteria, and (4) a manual annotation tool for labeling crossing-related events (e.g., 
entering the roadway, entering the path of the approaching vehicle, etc.) and pedestrian body 
language (e.g., head orientation, hand-waving, walking, standing, etc.). Note that the order of 
pipeline ensured that more costly steps operate over the least amount of data. 
 
Pedestrian Detection. In order to extract sections of driving in which pedestrians likely crossed 
the street, we, first, processed the remaining forward roadway video using YOLO v3 (Redmon 
and Farhadi, 2018), a real-time visual object detection system. In the context of computer vision, 
object detection is the problem of classifying and localizing (via bounding boxes) multiple 
objects in an image. There are several practical advantages to YOLO v3, (a) YOLO v3 is a deep 
learning based architecture which does not require manually crafted image features, (b) YOLO 
v3 can process video 4x faster than comparable alternatives (at 30fps on modern consumer 
hardware)(Redmon and Farhadi, 2018), and (c) we were able to detect the presence of more 
object classes than just pedestrian, which provides value for future related research. 
 
We then extracted 30-second video clips of the detected pedestrian crossings: 20 seconds prior to 
the frame with a crossing pedestrian and 10 seconds after it. If two videos overlapped, we 
combined them into one video. 
 
Manual Annotation of Crossing Event Characteristics. In order to label crossing-related 
events and pedestrian body pose, we manually annotated the videos using a custom 
OpenCV/Python tool. All annotations were of or relative to the lead pedestrian. Body pose 
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included (a) whether a pedestrian’s head was oriented toward or away from the driver or whether 
it was oriented down, (b) whether the pedestrian was standing, walking, or running, (c) whether 
the pedestrian waved at the vehicle. Crossing events included (a) when the pedestrian entered the 
roadway, i.e. when the pedestrian stepped onto the roadway (b) when the pedestrian entered the 
paths of the ego-vehicle, which may occur after the pedestrian steps onto the road (c) when the 
pedestrians exited the path of the ego vehicle, (d) when the pedestrian exited the roadway and (e) 
when the vehicle crossed the path the pedestrian took to cross, i.e. the point where the 
pedestrian’s and the vehicle’s paths crossed. Features of the intersection included (a) whether the 
intersection occurred at a stop light, (b) whether the intersection included a zebra crossing, (c) 
whether the pedestrian was jay-walking. 
 
Simulator Experiment 
 
Our simulator experiment tested people’s ability to estimate TTA under conditions when (1) 
vehicles approached at a constant velocity and (2) vehicles approached while decelerating. This 
experiment was designed and conducted to supplement the large-scale real-world dataset of 
pedestrian crossing in order to analyze the nuance of vehicle trajectory dynamics as they relate to 
pedestrian crossing decision. In real-world data, we cannot control either the pedestrians nor the 
vehicles, but simple observe and analyze the kinematics of both. In the virtual environment, we 
can control the vehicle trajectory and observe its effect on the pedestrian crossing decision. 
 
Design 
 
In this experiment, we tasked participants with estimating the time to arrival (TTA) of a vehicle: 
or specifically, with estimating when a vehicle would reach a white line painted across a virtual 
road. In each trial, after traveling some distance, the vehicle disappeared before reaching the 
white line. This forced participants to estimate the TTA based on prior kinematic information. 
We define the ground truth TTA as the time between the moment a vehicle disappeared and the 
time it would arrive at the white line. We measured participants’ estimated TTA by asking them 
to press the spacebar on their computer when they thought the vehicle would reach the white line 
– estimated TTA is thus the time between the moment the vehicle disappeared and the time a 
participant pressed the spacebar. 
 
RESULTS 
 

Large Scale Naturalistic Data Analysis 
 

We now illustrate the characteristics of vehicle trajectories found “in the wild” in situations 
where pedestrians chose to cross. Specifically, we show (1) evidence that temporal dynamics 
influence pedestrian decision-making, and (2) results convergent with (Petzoldt, 2014) which 
suggest that, while pedestrians use TTA when deciding whether or not to cross, they 
underestimate the TTA at higher velocities. 
 

(1) In Fig. 2 we show 284 vehicle trajectories (TTA over time) relative to the moment a lead 
pedestrian entered the path of the vehicle. While it may appear redundant to plot TTA 
over time, because vehicles accelerate/decelerate as they approach, in order to accurately 
estimate the time they have to cross, a pedestrian must update their estimates over time. 
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We see a trend, 34% of drivers slow the vehicle such that the time to collision increases 
before the pedestrian steps in front of their vehicle. Here, TTA refers to a simple linear 

extrapolation of vehicle kinematics, i.e. . To normalize the data, we align each 
trajectory on the frame in which an annotator determined a pedestrian entered the path of 
the oncoming vehicle. Though we are unable, with these data, to ask the counterfactual 
“what if the driver had not slowed down?”, these data suggest that, in real-world 
situations, pedestrians tend only to cross when vehicles slow down such that the time the 
pedestrian has to cross increases.  

 

 

Figure 3. TTA  in seconds at the moment a pedestrian entered the path of the oncoming vehicle. 
 

 
 

Figure 4. (Left) Participants’ estimates of TTA of a vehicle traveling at constant velocities: 5 mph (solid 
black) and at 30 mph (solid grey). Participants overestimated TTA when the vehicle traveled at 30 mph. 
Participants underestimated TTA when the vehicle traveled at 5 mph when the car was far away. (Right) 

Participants’ estimates of TTA of a vehicle traveling at a constant velocity and then decelerating. 
 

(2) In Fig. 3 we show the empirical cumulative distributions of TTA at the moment crossing 
pedestrians entered the path of the oncoming vehicle N=195 (we removed cases where 
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TTA was greater than 20). Performing a Kolmogorov-Smirnov test between each 
category of vehicle speed indicates a significant difference between when pedestrians 
cross the street in cases where vehicles traveled between 10-20 mph and cases where 
vehicles traveled between 20-30 mph (D-statistic=0.15, p¡0.05). The test does not 
indicate significant differences between any other pair of vehicle speed categories see 
Table 1. 

 

Table 1. Kolmogorov-Smirnov Test Table 
 

Samples D-Statistic p-value 
<10 mph & 10-20 mph 0.15 0.375 
<10 mph & 20-30 mph 0.22 0.145 
10-20 mph & 20-30 mph 0.30 0.011* 

 
Results of a Kolmogorov-Smirnov Test between each pair of the three vehicle speed categories. 

 
These results, taken from unconstrained real-world situations, provide strong supplementary 
evidence, that pedestrians base their decision of when to cross on TTA. We find, surprisingly, at 
higher speeds, pedestrians enter the lane with less time than at lower speeds. According to 
(Petzoldt, 2014), pedestrians overestimate the TTA at higher speeds – a result consistent with 
other literature (Hancock and Manster, 1997) (Sidaway et al., 1996). We note that (Petzoldt, 
2014) did not find evidence that overestimating TTA influenced gap acceptance. The Petzoldt 
(Petzoldt, 2014) study was conducted in a lab setting and the differences between our findings 
and theirs may be the result of their participants becoming aware of and correcting for their 
tendency to overestimate the TTA in a predictable environment. 
 

Simulator Experiment 
 

We now illustrate the results of how our participants were able to estimate TTA when a vehicle 
was traveling at a constant velocity and when a vehicle was decelerating. 
 

In Fig. 4 (left), we show evidence that people overestimate TTA of vehicles traveling at higher 
velocities. The plot shows the ground truth TTA (x axis) vs. participants’ estimates of TTA (y 
axis). The dashed black line (x=y) shows what an ideal estimator would look like. Estimates 
above the dashed line are over estimates; estimates below the dashed line are under estimates. 
This data agrees with (Petzoldt, 2014) that vehicle speed influences TTA estimates. This 
suggests the source of our findings from naturalistic study (that pedestrians enter the lane sooner 
under less TTA when vehicles are traveling at high speeds) is based on the perceptual bias – to 
overestimate TTA when vehicles are traveling at high speeds. 
 

In Fig. 4 (right), we show that people are sensitive to changes of speed and are able to rapidly 
update their estimates of the kinematics of oncoming vehicles. As in the previous plot, this plot 
shows the ground truth TTA (x axis) vs. participants’ estimates of TTA (y axis). This 
demonstrates that, as expected, people are able to rapidly update their estimates of the kinematics 
of oncoming vehicles. This result provides grounds for interpreting our findings that drivers alter 
their trajectories as they approach pedestrians as a non-verbal signal, which pedestrians may use 
to infer the intent of drivers. 
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CONCLUSION 
 

As more of the driving task becomes automated, we must deepen our knowledge of how 
pedestrians react to trajectories of human-driven vehicles. Closing this knowledge gap is 
important for developing both effective autonomous motion planning algorithms and 
communication protocols in a mixed fleet that includes vehicles controlled both by humans and 
machines. 
 

Here we have shown evidence that (1) in real-world situations pedestrian decision-making is 
biased – they tend to give themselves less time when vehicles travel at faster speeds, (2) 
dynamics of vehicle trajectories, namely increases in TTA, appear to serve as signals that it is 
safe to cross, and (3) that people can update their estimates of TTA as vehicles change speed. 
While these results provide a pragmatic conclusion, that automated technology ought to account 
for human bias to overestimate TTA at higher speeds, they also motivate the need to further 
study of dynamic trajectories in order to understand pedestrian-driver interactions at a more 
nuanced level. 
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