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Summary: Driving has become an integral part of our daily lives, and so too have 
the dangers associated with driving. Understanding driver behavior could lead to 
system modifications to alleviate some of these inherent dangers. Specifically, 
prediction of driver braking behavior might be used to improve automatic braking 
systems and adaptive cruise control systems. The research presented in this paper 
details the development of an algorithm to predict the brake onset times in 
situations where rear-end collisions might occur. The algorithm is adaptive to an 
individual and not set to generic values. This algorithm was generated using data 
from a previous study (Kelling, 2006). Displayed stimuli consisted of different 
situations for a lead vehicle (stopped, slower moving, and reversing lead vehicle), 
multiple rates of closure (32.2, 64.4, and 96.6 kph), and two luminance conditions 
(day or night driving). Brake onset times were recorded. A self-modifiable 
algorithm was developed and was found to have an R-squared value of .625. The 
degree of goodness-of-fit for this algorithm is worthy of note because it also 
considers differences in the driving environment. The individualized adaptive 
ability of the algorithm provides a greater overall fit for predicting braking 
behavior, and it may be more useful in automated systems than existing 
algorithms. 

 
INTRODUCTION 
 
Rear-end collisions accounted for more than 43% of the nearly 4.2 million reported multiple-car 
accidents in the United States (Traffic Safety Facts, 2007). Rear-end collisions could be caused 
by environmental factors, such as weather or road ice, or situational factors, such as driver 
distraction caused by alcohol or cell phone use while driving. The operator’s ability to drive can 
also be a factor in such events. Young, inexperienced drivers may have not yet learned the 
correct responses for certain situations. Older adults may have an increased reaction time to 
changing events while driving. The driver’s perceptual abilities are also vital to the success of 
driving. Failure to correctly assess the situation could have catastrophic results. Because 
perceptual failures exist at the primary level of the system, malfunctions at this level can cascade 
throughout the rest of the system. Identifying information that could be misrepresented or 
incorrectly perceived might aid in comprehending not only deviations and aberrations in driving, 
but also what constitutes normal driving. This notion of normalization in driving has led to the 
creation of predictive models of driver behavior. 
 
Lead Vehicle Perception 
 
Kelling (2006) provided evidence on the importance of the lead vehicle movement condition on 
a driver’s decision on when to initiate braking. When braking is initiated depends on what the 
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lead vehicle is doing. This finding has an interesting impact on the direct use of the perceptual 
cue tau. When using Regan and Gray’s (2000) equation for tau, no mention is made about the 
lead vehicle behavior. Interpupillary distance, lead vehicle distance, and rate of change of 
relative disparity can be equal across lead vehicle conditions for a specific rate of closure. A 
similar argument could be generated for Bootsma’s (1991) interpretation of tau. Thus, tau times 
across these scenarios would be equivalent, but because of the differences in what the lead 
vehicle is doing the perception may be different, causing changes in cognitive processing and the 
initiation of the resulting movement. Creating a predication based tau, could possibly ignore the 
variability due to the scenario based on the lead vehicle’s movement condition. 
 
The investigation of direct reaction time has been extensive over the years (see Green, 2000). 
Even so, there are large limitations in using canonical brake reaction times. Large variability and 
adaptability in the driving environment are problematic when all scenarios are collapsed into a 
single reaction type. Taking the opposing stance formulates its own problems. Attempting to 
catalogue the reaction times for every scenario a driver might encounter is quite a daunting, if 
not an impossible, task. Nevertheless, a predictive method cannot overlook the general reaction 
time of the driver whose behavior it is attempting to predict. Decreases of reaction time due to 
age or other conditions might have generalizable consequences to reacting to crash-related 
scenarios. A predictive algorithm must then be able to integrate these general factors, as well as 
those of the perceptual qualities that are relevant. Because of the possible age or conditional 
effects on an individual, it might be said that such an algorithm must learn and adapt as the users 
change. 
 
Current Models 
 
The previous argument highlights the dilemmas associated with using a canonical brake reaction 
time to predict human braking behavior. The next evolutionary step involves the development of 
algorithm models. These models allow more flexibility than generic reaction times, but they 
present a new issue regarding what perceptual information may provide predictive power. Two 
simple models include constant distance and constant tau. Constant distance minimizes the 
necessary perceptual information to distance by only requiring a distance variable. While this 
method does supply some formulation of individual differences, an individual’s variability is 
limited to a single constant. Constant tau also incorporates a general preference of the driver 
while using a more complex perceptual cue. Once again, the variability of the individual’s brake 
onset pattern is limited to a single interaction between a preference of time to contact, but does 
incorporate the velocity of the lead vehicle relative to the driver. Although, these models provide 
a more detailed account of a driver’s braking behavior than a canonical reaction time, Kelling 
(2006) indicated less than optimal results using these models.  
 
METHODS 
 
Participants 
 
Fifty Georgia Tech undergraduate students of both genders participated in this experiment. Only 
participants with normal or corrected to normal vision who had at least two years of driving 
experience were recruited. No additional driving experience measures were taken. All 
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participants were treating according to Institute Review Board procedures. 
 
Apparatus 
 
Participants were tested using an individualized testing station consisting of a PC computer with 
a 43.2-cm (17-in) CRT monitor. Multiple stations were simultaneously used. The computer was 
connected to an attached custom built functional brake pedal. The sequence and presentations of 
the animations were controlled using a program written in Inquisit (MillisecondTM, 2005). Each 

trial consisted of an animation depicting a road converging in the distance. CarreraTM 4 (EoviaTM, 
2005). At the beginning of each animation, the self-motion appeared as if the participant was 
inside and driving a vehicle. In the distance a vehicle appeared, the lead vehicle. The appearance 
of the vehicle was sufficiently distant so the participant was not surprised by its occurrence. 
Figure 1 depicts an example of an animation. A total of 30 animations were used, including catch 
trials consisting of no collisions, and each was a maximum of 10 seconds in duration.  
 
Procedure 
 
After granting consent, the participant was placed at the testing apparatus. Each participant was 
asked to depress the brake pedal when they would normally brake given the circumstances 
presented in the animation. The participant was informed that the goal was to depress the brake 
pedal as they normally would while driving. When the participant depressed the pedal, the time 
was recorded and the next trial began. The variables manipulated were rate of closure, lead 
vehicle motion, and luminance. Rate of closure was defined as the difference between the speeds 
of the lead vehicle relative to the participant’s vehicle. If the participant’s vehicle was traveling 
at 32.2 kph (20 mph) and the lead vehicle was stopped, this results in a 32.2-kph (20-mph) rate 
of closure. The same rate of closure occurred when the participant's vehicle was traveling at 40 
mph and the lead vehicle moved at 20 mph. Rates of closure assumed values of 32.2, 64.4, 96.6 
kph (20, 40 and 60 mph), with the participant’s vehicle assuming speeds of 0, 32.2, 64.4, 96.6, or 

Figure 1. Animation Sample 
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128.8 kph (0, 20, 40, 60, or 80 mph). Three types of lead vehicle motion condition were 
employed: a) driving toward a stopped lead vehicle, b) driving toward a slower moving lead 
vehicle, or c) stopped while a lead vehicle was reversing. Finally, luminance was limited to day 
or night environments. Lead vehicle brake lights and participant’s vehicle headlights remained 
constant for either luminance condition. Additionally, catch trials, in which the lead vehicle 
changed speeds to match the participant’s vehicle speed for each rate of closure by luminance 
combination, were added to prevent an anticipatory response. The combination of rate of closure 
by lead vehicle condition by luminance level was replicated 15 times for a total of 270 trials plus 
90 catch trials for a total of 360 trials. Upon completion of the experiment, the participant was 
debriefed and any questions were answered. 
 
Analysis and Results 
 
Brake onset times for each participant were transformed to tau times. Previous analysis of the 
data (Kelling, 2006) determined that luminance was a non-significant factor. It was therefore not 
included in the prediction algorithm. A repeated measures regression was used to create weights 
for the variables of rate of closure, lead vehicle motion condition, and an additional factor 
consisting of a base measure of an individual’s braking response. This base measure was 
calculated by averaged brake onset times across vehicle motion condition but within a single rate 
of closure. Three inputs are included in the algorithm. The rate of closure is based from the 
driver’s frame of reference in terms of miles per hour. The second variable, the lead vehicle 
motion condition, takes one of three constants (parked lead, slower moving lead, or reversing 
lead vehicle). The final input is the base measure, averaged tau time within rate of closure, in 
milliseconds. The resulting value is the tau time of normal brake onset in milliseconds. The R-
squared correlation for the model found in this experiment was .625. 
 
DISCUSSION 
 
The basis of the algorithm can be seen in equation 1. This equation predicts when a driver would 
normal begin to depress a brake based on the information presented earlier. 
 

PBOT = c1 – c2(RoC) – c3(VMC) – c4(BM)            (1) 
where 
RoC – Rate of Closure 
VMC – Vehicle Motion Condition 
BM – Base Measure 

 
The constants have been withheld from this discussion, but serve as weights for the algorithm. 
The output is predicted brake onset time, or PBOT. By equipping an automotive braking system 
with this type of algorithm, the system would have the ability to predict when a driver would 
normally react. If the driver did not react during this window, the system would have the time to 
react in a multitude of fashions, whether by warnings or brake action.  
 
General results from this study aid in a greater understanding of the driving environment we 
experience daily. The fit of the algorithm is quite substantial considering how dynamic the 
driving environment can be. Even within the relative confine of rear-end collisions, the fit of this 
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model could greatly aid driver safety. Over 62% of the variance in the braking behavior observed 
was accounted for by three variable types. When compared to existing models such as constant 
distance or constant tau, less significant results are found using the same data set: .605 and .412 
(Kelling, 2006). This finding speaks volumes on how our understanding of dynamic braking 
behavior could be reigned in. If such an objective could be reached, predictive models could 
become more effective. By effectively predicting brake onset behavior, assistive technologies 
such as adaptive cruise control and automatic braking systems will be better able to react to 
scenarios where collisions may occur. Systems that are based on more optimal information are 
likely to be more successful. Success in such an instance could mean the life of drivers, as well 
as that of those around them. To assume this goal is dependent on a predictive system that 
averages types of individual drivers to provide an umbrella prediction would not be the most 
advantageous method. Instead of treating the issue with a global solution, a solution that can 
adapt to every individual driver provides a much more robust result to driver assistive systems, 
while still covering the entire population. Adapting to the driver’s behavior provides these 
systems with a glimpse of what the driver may do or should do, and by altering the technology's 
behavior a greater level of trust and use of these technologies may occur. The high correlation 
derived from this model also suggests using the algorithm for accident reconstruction. Brake 
onset times could be generated for drivers and compared to the driver’s actual behavior. 
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