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Summary: Information, communication, and navigation devices need to be 
evaluated for ease-of-use and safety while driving. Lab tests, if validated, can 
evaluate prototype designs faster, more economically, and earlier than on-road 
tests. The Static Load Test was evaluated for its ability to predict on-road driver 
performance while using in-vehicle devices. In this test, participants perform 
various in-vehicle tasks in a lab while viewing a videotaped road scene on a 
monitor, tapping a brake pedal when a central or peripheral light is observed. For 
the on-road comparison test, the device, tasks, and lights are the same, but the 
participants also drive the vehicle while performing the tasks and responding to 
the lights. In both the lab and road tests, ten driver performance variables were 
measured. Our goal was to produce a linear model to predict an on-road variable 
from the lab data with low residual error, high percent variance explained, and 
few errors in classifying tasks as meeting or not meeting on-road driver 
performance criteria. Separate test data from a replicated Static Load Test at an 
independent lab were used to further validate the models. The results indicate a 
simple, inexpensive, and low-fidelity Static Load Test can accurately predict a 
number of on-road driver performance variables suitable for assessing the safety 
and ease-of-use of advanced in-vehicle devices while driving. 

 
INTRODUCTION  
 
A critical issue for driving assessment research is to evaluate the design of driver interfaces for 
the safe and efficient operation of vehicles under multitasking conditions. In driving, 
multitasking is required for primary tasks that have to be performed (steering, braking, 
navigation), as well as secondary tasks that are elective (e.g., operating radio or climate controls, 
destination entry). While it is possible to measure driving performance using instrumented 
vehicles on the road (e.g., by measuring speed, headway, time to respond to roadway events, 
etc.), such testing requires a drivable vehicle. Typically, prototype in-vehicle information 
systems capable of being tested in a drivable vehicle emerge only late in a product development 
cycle. It would be useful to have valid and reliable test methods that could be applied early in 
product development (long before on-road testing is possible) to identify potential effects of 
carrying out secondary or discretionary tasks while driving. Such testing methods must ensure 
that the tasks are performed as a secondary priority, because optimal user interfaces for 
secondary tasks may be considerably different than for primary tasks. (For example, voice 
controls might be the optimal interface for performing a task as a secondary priority, whereas 
visual-manual controls might be best for the same task if performed as primary.) If such early 
testing methods for secondary interfaces could be found, they would allow the driver interfaces 



PROCEEDINGS of the Third International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design 
 

 241 

to secondary tasks to be improved and optimized through iterative design—in advance of any on-
road verification of driver performance.  
 
It is often assumed that drivers perform in a simulator the way they do on the road, implying a 
one-to-one relationship between laboratory and on-road variables (Strayer, Drews, and Crouch, 
2003; Greenberg, et al., 2003). Research has only recently begun to address the strength of the 
relationship of metrics in simulators to actual on-road driving performance (Farber, et al., 2000; 
Tijerina, et al., 2000; Tijerina, Parmer, & Goodman, 2000; McGinty, et al., 2001; Hashimoto, & 
Atsumi, 2001; Angell, et al., 2002; CAMP, 2005).  It is also often assumed that a single static 
variable (e.g., time to complete a task) can adequately predict dynamic driver performance 
during secondary tasks (SAE, 2004). 
 
A set of metrics was therefore developed to compare the performance of drivers in a low-fidelity 
driving simulator using the Static Load Test (Angell, et al., 2002), with data obtained from on-
road test observations, using several prediction methods. Data was collected on the same set of 
tasks with different groups of drivers in three settings: (1) driving on the closed road – the 
Virginia Tech Transportation Institute (VTTI) Smart Road; (2) in a lab at the GM Milford 
Proving Grounds (MPG) for the Static Load Test; and (3) in a lab at VTTI for an independent 
Static Load Test. The same driver performance variables were collected in all three settings. Four 
different modeling methods for predicting on-road driver performance variables were compared. 
The results show that (1) even a low-fidelity driving simulator can make valid predictions of a 
number of on-road driver performance variables, if the metrics are converted to on-road values 
by appropriate linear transformation equations; (2) multivariate methods make more accurate 
predictions from lab to road than univariate methods. 
 
METHODS AND PROCEDURES  
 
Test Methods 
 
Static Load Test. Participants performed secondary tasks on a device in a stationary vehicle 
while viewing a real-life videotaped road scene on a television monitor. Unlike conventional 
simulators, no interactive steering was required, so the test could be easily conducted in any 
vehicle in a garage setting. Participants were asked to keep their hands on the wheel and eyes on 
the road as if driving, except when accessing the in-vehicle device (e.g., a navigation system). 
When performing the secondary task such as destination entry, participants were asked to tap the 
brake when they saw a central (i.e., on the hood) or peripheral light (i.e., on the vehicle left side 
mirror). One set of participants were tested at the GM MPG Usability Laboratory and another set 
were tested at VTTI. The static test conditions were the same except MPG used two small red 
light-emitting diode (LED)  lights, and VTTI used  a more intense cluster of blue LED lights.  
 
On-Road Dynamic Test. For the on-road test, the vehicles, devices, and tasks were the same as in 
the static test, except a different set of participants drove the vehicle on a closed road while 
performing the secondary tasks. The lights on the vehicle were the same cluster of blue LED 
lights used in the VTTI Static Load Test. On-road variables were the same as the lab variables.  
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Tasks, Vehicles, and Systems 
 
There were 42 in-vehicle tasks tested, grouped into four sets of 10 or 11 tasks each, with separate 
participants assigned to each task set. Tasks varied in type (Entertainment, Anchor, and 
Navigation) and degree of difficulty. Entertainment tasks included tuning a radio station, or 
paging to find an MP3 song; anchor tasks included changing temperature, or dialing a handheld 
cell phone; navigation tasks included entering a destination. Two non-GM 2003 production 
vehicles with navigation systems were used for collecting the modeling data and one set of 
model validation test data. A prototype navigation system in a pre-production GM vehicle was 
used for collecting the other model validation test data. The tasks, vehicles, and navigation 
systems were matched for the dynamic and static tests. 
 
Experimental Design 
 
Participants. Each of the task sets was tested with a different group of 10-16 participants, 
counterbalanced for participant age (25-44 younger, 45-65 older) and gender. Each task set was 
run both statically and dynamically with different participants, for about 120 participants total.  
 
Model Data. To create the model, 31 tasks were performed, both statically at MPG and 
dynamically at VTTI’s Smart Road on the two production non-GM vehicle navigation systems. 
The number of “analytical” or design-intent steps in each task ranged from 1 to 26. The 
prediction models were calculated from the 31 tasks with paired static and dynamic data.  
 
Model Validation Test 1. This test ran an additional 11 tasks statically at MPG and dynamically 
at VTTI on a prototype GM vehicle navigation system. The tasks used a completely different 
navigation system and group of participants than that used to develop the prediction model. 
Static data for the validation test were placed into the models previously determined, and on-road 
predictions were made and compared with the new set of on-road data. The purpose of this 
model validation test was to determine if the models could accurately predict the on-road results 
for new systems not previously tested. Such independent validation tests control for possible 
over-fitted or ill-conditioned models. 
 
Model Validation Test 2. This test replicated the same Static Load Test at MPG but was 
performed in an independent static laboratory at VTTI. The same 31 tasks and vehicles used to 
create the model were tested. The predictions made from the VTTI Static Load Test (using the 
model constructed from the MPG lab data) were compared with the same dynamic data used in 
the model-building. The purpose of this second validation test was to determine if the models 
developed with MPG static data could accurately predict the on-road results from a static 
replication at another laboratory site. 
  
Limitation of Model Validation Test 2. The static model validation test at VTTI included four 
static tasks with participants whose task times fell outside the 81-second range of the MPG static 
data that produced the models for tasktime. These “bad” or outlier points are artifacts of an 
erroneous static test procedure inadvertently employed in validation test 2. The correct procedure 
calls for visual-manual tasks to be stopped at 81 seconds (equivalent in the on-road test to 
driving 0.9 mile at 40 mph) and marked “unsuccessful,” but difficult tasks could be continued to 
a 180-second limit in the static model validation test at VTTI. As a result, the means for the 
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longer tasks in the static test had values outside the range of the static data used to generate the 
models. Thus, the model would necessarily overpredict on-road task times when static task times 
were longer than 81 seconds. These long tasks also placed other variables such as number of 
glances and eyes-off-road time outside the range of the models for those tasks. The final 
validation results are discussed with and without these four outlier tasks.  
 
Variables, Data Collection and Preliminary Data Analysis 
 
Ten driver performance variables were measured for the static and dynamic tests (Table 1, see 
also Angell, et al. 2002; Young & Angell, 2003). There were two trials for each task for each 
participant for tasks in sets 1 and 2. The data were first averaged across the two trials for each 
participant to create a participant mean for that task (except for perSucc which was calculated as 
percent of successes across trials). Task sets 3 and 4 had only 1 trial per participant and so that 
value was used directly.  
 
On-Road Task Percentiles. On-road, the task percentiles across participants’ means were 
generated for most variables. The criteria for driver performance variables are often specified in 
terms of a percentage of participants who must meet a criterion (SAE, 2000; Alliance of 
Automotive Manufacturers, 2003). The percentile was used here as a surrogate of the percentage 
(see Table 1 for the exact metrics used). For the static data, the means were generally used as the 
independent variables rather than the percentiles (except for the one-to-one method where the 
static percentiles were used) because the static means produced better predictions than the static 
percentiles for the dynamic variables. Percentiles in practice show more variability than means, 
and also the statistics for measuring errors of percentages or percentiles are not as well 
established as they are for means. Predicting on-road percentiles has more practical value than 
predicting means, for testing industry criteria (Alliance of Automotive Manufacturers, 2003). 
Hence the dynamic percentiles were used for creating the models and establishing prediction 
validity, despite the fact that the prediction errors were greater for percentiles than means. 
 

Table 1. Variables measured in static and dynamic tests 

No. Variable Name Dynamic Static 

1 Task Completion Time tasktime 80th%ile mean 
2 Number of Steps numsteps 80th%ile mean 

3 Eyes-Off-Road Time eort 85th%ile mean 

4 Number of Glances to the In-Vehicle System glances 80th%ile mean 

5 Subjective Workload workload 80th%ile mean 

6 Subjective Situation Awareness sitAware 20th%ile mean 

7 Percent Successful Task Completion perSucc percent percent 

8 Percent of Total Visual Events Missed allmiss mean mean 

9 Mean Single Glance Time to System glncedur 85th%ile mean 

10 Time to Respond to Visual Events evnttime mean mean 

            
Static Means. For the static lab data, averages across participants generated task means. These 
task means for the variables were then used to predict on-road performance. The main goal of 
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this study, therefore, was to predict the on-road driver performance variable values from the 
mean task data measured in a static lab. The means of the static lab variables were chosen 
because control studies (not shown) indicated that the static means were better than the static 
percentiles at predicting the dynamic percentiles.  
 
Models 
 
Four linear models were evaluated to predict the on-road driver performance data at VTTI from 
the Static Load Test data from MPG. 

One-to-One Model. This model implicitly assumes that the measures obtained in a driving 
simulator are the same as would be obtained on the road. To test this model, we determined how 
closely the dynamic on-road metric matched the static metric for each task for each variable. For 
example, do the 80th percentile dynamic values match the 80th percentile static values for the 
tasks?  
         
Simple Linear Regression (SLR) Model. This model assumes that there is a simple linear 
relationship between the results in the lab and road tests, that is, the dynamic percentile equals 
a*(static mean) + b, where a and b are parameters determined using the standard least squares 
method. Typically the percentile for each dynamic performance variable is modeled as a linear 
function of the mean of the corresponding static variable. Both Angell, et al. (2002) and Tijerina, 
et al. (2000) employed the SLR model. 
 
Multiple Linear Regression (MLR) Model. This model uses multiple static variables to predict 
each dynamic variable. It assumes that the results obtained in the Static Load Test can produce a 
better prediction if they are jointly used to predict what would be found on the road. That is,  
 
        Percentile of Dynamic Performance1 = β0 + β1*Static Mean1 + β2*Static Mean2 + …,       (1) 
 
where the βi are parameters determined by standard multiple least squares methods. The “best 
subset” techniques in MINITAB® (2004) were used for this purpose. The best subset was chosen 
based on highest adjusted R2, lowest s value, and expert statistical judgment. 
 
Partial Least Squares (PLS) Model. This model is particularly useful if some of the predicting 
variables (i.e., independent X) tend to collinearity (as may be expected since the dynamic 
variables in this test paradigm are known to have high collinearity between the same variables). 
PLS transforms the predicting variables to a set of uncorrelated components using Principal 
Component Analysis (MINITAB®, 2004). The components are extracted in such a way as to 
explain the maximum variance of the dependent variable Y by the predicting X variables (Geladi 
& Kowalski 1986; Hoskuldsson, 1988). MINITAB® (2004) was used to perform PLS between 
lab and on-road variables, using the first 5 principal components from the 10 static lab X 
variables to predict each dynamic variable Y in turn. (Alternate numbers of components from 3 to 
10 were extracted with little difference in the results.) PLS controlled for the possibility that 
collinear effects in the MLR model might somehow give rise to the strong models observed here. 
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Metrics and Definitions for Model Accuracy   
 
Adjusted R2. This metric is the percentage of total variance in the observed data explained by the 
predictor variables. It is adjusted downward from the original R2 to control for the number of 
predictors in the model. It is useful for comparing models with different numbers of predictors. It 
ranges from 0 to 100%—the closer to 100%, the better the model. 
 
s. This metric is the standard deviation of the regression, which is the same as the root mean 
square residual error between all the predicted and observed data points. It ranges from 0 to the 
upper limit of the data. The lower the s, the better the model. 
 
Classification Errors. This metric (Tijerina, et al., 2000) is the number of errors made in 
classifying tasks as meeting or not meeting on-road criterion. (Note: the criteria used here were 
chosen for illustrative purposes only and do not represent actual production criteria.) A false 
alarm is a task predicted from the lab data to not meet an on-road criterion, when in fact it did. A 
miss is a task predicted to meet an on-road criterion, when in fact it did not. The total errors are 
the sum of the false alarms and misses.  
 
Strong and Weak Models. Therefore, strong models have high R2, low s, and few classification 
errors and weak models have low R2, high s, and many classification errors.   
 
Metrics for Model Validation Tests 
 
Test R2. This metric is given by equation 2 (Chatterjee & Price, 1977) and is similar to the model 
R2, but it is based instead on direct comparison of the observed and predicted validation test data 
points. The yi are the observed on-road values, the ŷ i are the predicted values from the static test 
data, and ybar is the mean observed on-road metric used for that task. The sums were taken from 
1 to 42 across the combined model validation test data (Eq. 2).  

                   Test R2 = 1 -  ∑ (yi – ŷ i)2 /  ∑ (yi – ybar)2                                        (2)                            

Root Mean Square Error (RMS). This error metric for validation accuracy (similar to the s metric 
for model accuracy) was calculated by equation 3, where the yi are the observed on-road values 
and the ŷ i are the predicted values. The sum was again taken from 1 to 42.  

                                                RMS error = ∑ sqrt [(yi – ŷ i)2/n]                                                   (3)  

Box RMS Error. Tasks near the criterion are of particular importance for task classification 
accuracy. Tasks with low (or high) predicted and observed values relative to the criterion are 
unlikely to be misclassified, because classification is tolerant to a large prediction error at the 
data extremes. A “box” for examining prediction accuracy was therefore established at ±50% of 
the criterion. For example, for a criterion of 20 seconds, the box was defined from 10 to 30 
seconds. The RMS error for points within this critical box was tabulated for each model. 

The metric for classification errors and the strong and weak model definitions for the validation 
tests are the same as given in the above section for the metrics for model accuracy. 
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RESULTS 
 
Tasktime Results 
 
SLR Model. Figure 1 shows a simple linear regression of the mean static tasktime at MPG (x-
axis) predicting 80th percentile values of dynamic on-road tasktime at VTTI (y-axis). The letters 
on Figure 1 refer to the 31 individual tasks included in the model development. The figure shows 
that a 15-second mean lab tasktime (vertical reference line), corresponds to about a 20-second 
on-road 80th percentile tasktime (horizontal reference line), adopted here as the criterion for 
tasktime.  
 
SLR Validation. Figure 2 shows the combined model validation tests 1 and 2 for the SLR 
tasktime model in Figure 1. The predicted on-road 80th percentile values are shown on the y-axis 
for the new sets of static data, and the observed on-road 80th percentiles are shown on the x-axis 
(same y-axis as Fig. 1). Task points falling near the diagonal equality line indicate a close fit 
between predicted and observed values, indicating validation of the model. The Test R2 values 
(see Eq. 2) are given in the inset Table for all the tasks (11%), tasks in the critical box (47%), 
and all tasks minus the outlier or “bad” tasks r, k l, and m (61%). 
 
Table 2 (based on Tijerina, et al., 2000) shows the classification method for determining whether 
a task correctly met the on-road criterion of 20 seconds for the 80th percentile tasktime. The left 
upper quadrant indicates false alarms—a task was erroneously predicted to not meet the on-road 
criterion when in fact it did (the predicted on road tasktime 80th percentile was > 20 sec but 
actual on-road was ≤ 20 sec). The inset box in Figure 2 shows there were five false alarms—
tasks r, g, q, G, and 2 in the upper left quadrant. The lower right quadrant indicates misses—a 
task was erroneously predicted to meet on-road criterion when in fact it did not (the predicted on 
road tasktime 80th percentile was ≤ 20 sec but actual on-road was > 20 sec).  There were no 
misses in Figure 2. The upper right quadrant indicates the predicted and observed data agree the 
task does not meet criterion (a true positive, 11 tasks in Figure 2), and the lower left quadrant 
indicates predicted and observed agree the task meets criterion (a true negative, 26 tasks in 
Figure 2). 

Table 2. Task classification 
 
 
 
 
 
 
MLR Model. Figure 3 shows the results for the MLR model fit, with an adjusted R2 of 98.9%, the 
highest of the four models. The MLR reduced the SLR false alarms from 3 to 1, with the number 
of misses remaining at 0. The MLR model improvements were not because of the increased 
number of parameters compared to SLR. The adjusted R2 value reduces the raw R2 value as a 
function of the number of parameters. Further controls for over-parameterization are given in the 
validation results. Curiously, the best subset MLR prediction model for dynamic tasktime did not 
have static tasktime in its equation (not shown), and yet did better than the other models for 
predicting dynamic tasktime. This fact demonstrates the power of the multivariate methods, 
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because non-obvious solutions can be empirically verified for production and given practical 
implementation.  
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Figure 1. Simple Linear Regression (SLR) Model for tasktime. The x-axis is the 
observed static task time at MPG. The y-axis is the observed on-road 80th percentile 
value at VTTI. The dashed lines are the 90% prediction interval for predicting new 
tasks.  The letters indicate individual task pairs. 
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Figure 2. SLR Model Validation Test results for tasktime. The x-axis is the observed on-
road 80th %ile value for tasktime. The y-axis is the predicted on-road 80th %ile tasktime 
from the model, from the new static tests. The dotted box is ±50% of the criterion. The 
2x2 matrix shows the counts of the tasks in each quadrant defined by the two criterion 
lines at 20 seconds. The table shows the Test R2 and RMS error depending upon all 
tasks, tasks in the dotted box, and all tasks minus the four “bad” outlier tasks labeled r, 
k, l, and m.  
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Figure 3. MLR Model results for tasktime. Same axes and symbols as Figure 2. 
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Figure 4. MLR Model Validation Test results for tasktime. Same axes and symbols as 
Figures 2 and 3. The inset table shows the Test R2 and RMS error depending upon all 
tasks, tasks in the dotted box, or all tasks minus the four tasktime outlier points labeled 
r, k, l, and m. The outlier task r is the only false alarm, and Tasks 7 and 11 in the lower 
right quadrant are the only misses (but see section on conjoint criteria). 
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Table 3. Modeling results for MPG static mean data  
predicting on-road 80th %ile tasktime and numsteps 

 tasktime numsteps 

Method 1-1 SLR MLR PLS 1-1 SLR MLR PLS 

Adjusted R2 90.4% 97.4% 98.9% 98.4% 95.4% 96.9% 99.6% 99.6% 

s 5.45 2.83 1.69 2.26 1.87 1.50 0.48 0.54 

s% 27% 14% 8% 11% 9% 7% 2% 3% 

False Alarms 1 3 1 1 1 1 0 1 

MODEL 
n = 31 

Misses 1 0 0 0 0 0 0 0 

Test R2 86.3% 60.6% 97.1% 88.6% 94.3% 94.4% 98.1% 92.4% 

RMS 3.62 5.60 3.56 3.04 1.53 1.51 1.47 1.77 

RMS% 18% 28% 18% 15% 8% 8% 7% 9% 

False Alarms 3 4 0 2 2 0 1 2 

TEST-bad 
n = 38 

Misses 2 0 2 1 0 0 0 0 

 

Tasktime Model Validation Results  
 
Two sets of static data, not used to generate the models, were used to validate the models. The 
combined results for tasktime are shown in the lower left quadrant of Table 3, minus the four 
outlier data points (r, k, l, and m) evident in Figure 4. 
 
Here the MLR model was validated with the best Test R2 value at 97.1% and the second best 
RMS error value at 3.56, or 18% of the 80th percentile tasktime criterion of 20 seconds. The 
MLR model reduced the false alarms from 5 to 1 compared to the SLR model (or 4 to 0 if the 
outlier “r” is excluded). However, the MLR model increased the number of misses from 0 to 2 
relative to the SLR model. These misses are labeled “7” and “11” in the lower right quadrant of 
Figure 4, and they are resolved in the section below on conjoint on-road criteria.  
 
Numsteps Model and Model Validation Results 
 
The numsteps model and model validation results are presented in the right half of Table 3, and 
the MLR model validation results in Figure 5. Table 3 shows that MLR produced the best model 
at 99.5% adjusted R2, and an s of only 0.48, or 2% of the criterion. That is, the overall standard 
deviation of the residual error was less than ½ step for predicting from lab to road. There were no 
false alarms and no misses in the numsteps MLR model, but one false alarm in the SLR model.   
The lower right portion of Table 3 shows that in the validation data without the outlier points, the 
MLR model was again the strongest at 98.1% Test R2, and 1.47 RMS error. There was only 1 
error (task 3, see upper left quadrant of Fig. 5), excluding the outlier data point “r.” 
 
Conjoint On-Road Criteria May Reduce Overall Errors 
 
Reduction in Overall Missed Tasks. It is worth noting that conjoint consideration of the dynamic 
variables reduced the overall number of missed tasks. For example, consider that task 11 is a 
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miss for tasktime (see Figure 5, lower right quadrant). Using static tasktime alone would have 
erroneously indicated this task was acceptable for on-road deployment without redesign. Let us 
make the conjoint rule that a task must meet the on-road criteria for both tasktime and numsteps. 
We see from examining the data in Figure 6 that task 11 did not meet the on-road criterion for 
numsteps (see upper right quadrant of Figure 6). Therefore task 11 was correctly predicted as a 
problem task by the conjoint rule—it exceeded one or more of the conjoint criteria. Likewise, 
task 7 was a miss for tasktime (Figure 4) and barely a miss for numsteps (Figure 5, with 8.9 
predicted steps). However, that task is eventually “flagged” as a true positive and not a false 
alarm because the on-road predictions for the event detection variables (not shown) correctly 
flagged the task as not meeting on-road criteria. Therefore, the use of conjoint criteria cannot 
increase the overall miss rate but does reduce it—tasks that are missed via some on-road 
variables can still be flagged as true positives by other variables. 
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Figure 5. MLR Model Validation Test results for numsteps. Same legend as for earlier 
figures. There are two classification errors, misses “r”(an outlier point) and “3” in the 
upper left quadrant. 
 
Reduction in Overall False Alarm Tasks. False alarms also may decrease when dynamic 
variables are considered conjointly. A single dynamic variable may meet its on-road criterion, 
but have an associated prediction that is a false alarm. However, considering multiple on-road 
variables in a conjoint manner, some other variable may indicate that the task is correctly 
predicted to not meet its on-road criterion (a true positive). That is, a false alarm via one 
predicted variable may actually be a “true” alarm or a problem task needing redesign, via other 
predicted variables. Hence the overall task will be correctly classified by the conjoint variable 
method as not meeting on-road criteria. Thus, conjoint variables may reduce the false alarm rate 
for the task as a whole, compared to considering any single variable. If only one variable is a true 
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positive for a task, a conjoint analysis will correctly classify the task as not meeting criteria, even 
if all other individual variables were false alarms for that task. 
 
In short, overall false alarms and misses may both be decreased at the task level when the on-
road variables are considered in a conjoint multivariate manner. Thus the use of multiple 
variables instead of a single variable can prove of benefit for dynamic as well as static data.  
 
Additional Variables 
 
The results for the remaining eight variables followed the same general pattern for tasktime and 
numsteps as far as the different models were concerned. However, the dynamic models were 
readily classifiable into strong and weak based on the model metrics. 
 
Strong Models. The following on-road variables were strongly predicted by all three regression 
models (but not the one-to-one model): tasktime, numsteps, eort, glances, workload, and 
sitAware. These predictions were strong for both the original model data and the two validation 
sets. The MLR method tended to outperform the simple linear regression or PLS methods. The 
MLR model R2 values ranged from 91.6% for sitAware to 99.6% for numsteps. The MLR model 
also had the lowest s values as a percentage of the criterion for that variable (from 6% for 
numsteps to 12% for eort for MLR, etc.). Table 4 shows the strong variables had only a few task 
classification errors for the 31 tasks in the model. The MLR model had only a few errors, and no 
errors for numsteps and eort.  
 
Weak Models. The following on-road variables 
were weakly predicted by all four models:  
perSucc, allmiss, glanceDur, and evnttime. Weak 
models had low model R2 values (ranging from 
15% for perSucc to 52% for evnttime for the 
MLR model) and high s values relative to the 
criterion for that variable (from 9% for perSucc 
to 37% for allmiss). Table 4 shows the weak 
models also had many task classification errors 
for all models. Even the MLR model had 5 to 6 
classification errors for the weaker variables. The 
one-to-one model did particularly poorly for 
allmiss, glncedur, and evnttime, with 9-12 
classification errors for 31 modeling tasks. 

      

Class Variable 1-1 SLR MLR PLS 

strong tasktime 2 3 1 1 

 numsteps 1 1 0 1 

 eort 0 0 0 0 

 glances 2 3 2 1 

 workload 4 3 2 2 

 sitAware 2 2 1 1 

weak perSucc 1 1 1 1 

 allmiss 9 9 5 5 

 glncedur 12 6 6 5 

 evnttime 9 9 5 7 

Table 4. Task classification model errors 
 
In general, the MLR regression model performed the best of the four models studied, as far as its 
overall capability for producing a strong model for the metrics and data examined here, and 
making valid predictions for test data not part of the original model data. 
 
DISCUSSION 
 
This study confirms the hypothesis by Angell et al. (2002) that static tests using multiple 
measures, together with a multivariate model, hold the most promise for predicting eventual on-
road driver performance in the early development of in-vehicle information systems. 
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Model Method Comparison 
 
The Multiple Linear Regression (MLR) method yielded the best overall prediction results for the 
test data of the methods and metrics in this study. It accomplished this result despite the near 
collinearity of several of the variables (see Young & Angell, 2003), contrary to conventional 
statistical wisdom. We believe this result is because the variables selected for the MLR model 
were based on extensive analysis, and expertise from experienced applied statistical analysts. 
 
The Partial Least Squares (PLS) method controlled for collinearity in the MLR model because it 
did not produce a better R2, RMS error score, or fewer errors than the MLR method. However, if 
expertise in MLR is not readily available, the PLS method may be easier to apply and may be 
acceptable in production applications if a slightly less than optimal prediction is acceptable.  
 
The Simple Linear Regression (SLR) method produced satisfactory metric values for the strong 
variables, but had higher classification error rates than either of the multivariate model and 
validation data sets. The easier SLR model may be acceptable in production use, if a somewhat 
higher classification error rate can be tolerated. 
 
The one-to-one method was the least satisfactory of the methods examined and is not 
recommended for production use with a simulator unless on-road data specifically validates the 
one-to-one model for the simulator being used.  
 
Variable Comparison 
 
Strongly Predicted Variables. Particularly good predictions for the regression methods were 
obtained for the six strongly predicted variables of task time, number of steps, eyes-off-road 
time, number of glances, subjective workload, and situation awareness. These variables are 
considered sufficiently validated that they can be placed into production use in a static laboratory 
using the methods outlined here, for predicting on-road driving performance in a robust, reliable, 
and valid manner. 
 
Weakly Predicted Variables. None of the methods employed here produced satisfactory on-road 
prediction results for the four weakly predicted variables: response time, percent missed events, 
glance duration, and successful task completion. The root cause of why static lab variables are 
weakly predictive of these dynamic on-road variables requires further investigation.  
      
FUTURE WORK  
 
Future work should attempt to improve the predictive capability of the weak variables. The event 
detection variables of response time and percent missed events are particularly important 
variables for real-world driver performance. It is obvious that seeing and responding to roadway 
events in a timely and appropriate manner is important for good driver performance. It is hoped 
that understanding the fundamental neural mechanisms underlying event detection and response 
(Young et al., 2005) will improve the reliability and validity of response time and missed events 
as static metrics that can validly predict on-road event detection performance. 
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Another opportunity for future work is to combine information from the dynamic variables using 
Principal Component Analysis. The multiple variables on the dynamic side as well as the static 
side can be reduced into a few components that are more robust than any single variable (Young 
& Angell, 2003). Advanced statistical methods can then be used to optimize the prediction from 
the lab to road components, rather than the individual variables. At least three components must 
be used both statically and dynamically, because on-road driver demand is known to require at 
least three separate dimensions to specify it fully, at least under these test conditions (Young & 
Angell, 2003). 
 
CONCLUSIONS  
 
The Static Load Test is a valid tool for predicting on-road driver performance during secondary 
tasks for a number of dynamic variables. It can be applied early in product development to 
identify potential effects of carrying out discretionary tasks while driving.  It allows driver 
interfaces to be improved and optimized through iterative design—in advance of any on-road 
verification of usability and driver performance. Relatively simple metrics obtained from even a 
low-fidelity driving simulator, when transformed through appropriate equations, can help guide 
early development of advanced in-vehicle information and communications systems. Also, 
multivariate methods make more accurate predictions from lab to road than univariate methods. 
One can indeed go from “Road” to “Lab” and maintain validity, using the methods outlined here. 
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