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Abstract  

Observational postural assessment methods which are commonly used in industry are time consuming 

and have issues of inter- and intra-rater reliability. Computer vision (CV) based methods have been 

proposed, but they have mainly been tested inside lab environments. This study aims to develop and 

evaluate an upper body postural assessment system in a real industry environment using a single depth 

camera and OpenPose for the task of forklift driving. The results were compared with XSens, an Inertial 

Measurement Unit (IMU) based system. Data from three forklift drivers performing seven indoor and 

outdoor tasks were recorded with a depth camera and XSens sensors. The data were then analyzed with 

OpenPose with additional custom processing. The angles calculated by the computer vision system 

showed small errors compared to the XSens system and generally followed the trend of the XSens system 

joint angle values. However, the results after applying ergonomic thresholds were vastly different and the 

two systems rarely agreed. These findings suggest that the CV system needs further study to improve the 

robustness on self-occlusion and angle calculations. Also, XSens needs further study to assess its 

consistency and reliability in industrial environments. 
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Introduction  

Occupational ergonomics is a discipline which attempts to adapt the job to the worker with the goal of 

promoting worker health, safety, comfort, and productivity (Frederick et al., 1984). The promotion and 

maintenance of good occupational ergonomics reduces the risk of chronic injuries and illnesses, and 

consequently decreases the cost incurred by lost productivity, sick leave, and medical care (Kok et al., 

2020). Forklift driving in industry is one of the work tasks linked to increased risk of upper body 

problems (Flodin et al., 2018; Viruet et al., 2008). The risk factors are commonly identified and managed 

using observational methods based on direct on-site observation or watching recorded videos of workers 

performing their usual tasks. Examples of such methods for postural assessment are RULA (McAtamney 
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& Nigel Corlett, 1993), REBA (Hignett & McAtamney, 2000), and RAMP (Lind et al., 2014). Apart from 

requiring a time-consuming manual analysis, the major disadvantage of observational ergonomic 

assessments is that they are heavily subjective which leads to considerable intra- and inter-rater variability 

(Burdorf et al., 1992; Fagarasanu & Kumar, 2002). 

Industry 4.0 has led to the incorporation of motion capture (MoCap) solutions in industrial applications 

for improving processes and productivity, with a focus on workers’ health and safety (Menolotto et al., 

2020). In line with that, low-cost MoCap systems based on computer vision (CV) have been researched to 

solve the aforementioned posture assessment problems. One such MoCap solution is OpenPose, a real-

time multi-person 2D pose estimation system, which has been used for postural assessments with both 2D 

(Lin et al., 2022) and 3D approaches (Kim et al., 2021). These studies have shown that OpenPose has 

acceptable accuracy for posture assessment with joint angle errors of 8.0° and 8.4° respectively.  

Previous studies on CV solutions for postural assessments were mainly constrained to lab simulations. 

Factors such as spatial constraints, limited field of view, (self-)occlusions, and external interference (light 

conditions, vibrations) could deteriorate the performance of the aforementioned solutions (Menolotto et 

al., 2020), and these factors are often present in industry environments such as forklift driving. To the best 

of the authors’ knowledge, no studies have been performed to evaluate postural assessment in forklift 

driving in industry using a CV system.  

Therefore, the aim of this paper is to develop and evaluate an upper body postural assessment system for 

forklift driving in a real industry environment using a single depth camera and OpenPose.  

Methods 

Computer Vision System Setup 

A single depth camera (Intel RealSense D455) was rotated vertically and positioned in front of the driver 

at an angle of 45° above their head, to obtain the best view on the operator’s upper body posture, as 

shown in Figure 1. Forklift driving has low possibility of external occlusions between the driver and 

camera. To calculate all angles needed for upper body posture analysis including neck and trunk twist, 3D 

representation of the posture is required. Calibration of multiple cameras is complex and time-consuming, 

and the setup requires space which is limited inside a forklift. Hence, a single depth camera was selected 

for the study. 
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Figure 1. Depth camera placement inside forklift. 

To capture data from the depth camera, a Python script was developed which records RGB images and 

depth maps at the rate of 15 frames per second with resolution of 640 x 360 (width x height) pixels. The 

depth maps were aligned with the RGB images using methods in the Pyrealsense2 library, an opensource 

library developed and released by the camera manufacturer. The depth data may contain some missing 

values where data is not available. This may happen because of occlusions between the two depth sensors 

or between the depth and color stream which do not see exactly the same image, under- or over-exposure, 

objects being too close to the camera (less than the minimum depth range), etc. In order to correct missing 

depth data in the resulting depth images, a hole filling filter was applied which uses the value from the 

neighboring pixel closest to the sensor. Python 3.8 environment was used to execute the code.  

Inertial Measurement Unit (IMU) System Setup 

XSens MTw Awinda, an IMU-based MoCap system, was chosen as the reference system for this study 

because it has shown acceptable performance for ergonomic analysis (Kim et al., 2020). 11 inertial 

sensors were used to record joint angles from the upper part of the body as shown in Figure 2. XSens 

MVN Analyze Pro 2021.2 software was used for calibration and data collection.  

 
Figure 2. Placement of XSens sensors on the upper part of the body. 
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Participants 

One female and two male forklift operators participated in the study. Their average age was 30 ± 11, their 

average height was 171 ± 4 cm, and they have been working as a forklift operator for 4 ± 1 years on 

average. The participants took part in the study voluntarily and they gave consent for processing and 

using the recorded photos and videos for research purposes. The forklifts used by the participants in the 

experiments were Linde E30, E25, and E20. 

Ergonomic Assessment Method 

The ergonomic assessment thresholds selected for this study were the upper body joint angle thresholds 

from RAMP II (Lind et al., 2019). This method considers the duration of the postures such that the longer 

the duration, the higher the risk for the operator. The resolution of the method is at the level of seconds.  

Experimental Procedure 

The forklift operator wore an XSens T-shirt and Velcro straps on the upper part of the body where 11 

inertial measurement units were attached in accordance with the manufacturer’s instructions (Figure 2). 

The XSens calibration for initializing the setup was performed using the XSens MVN software set up in 

vehicle mode. The data was recorded at a frequency of 60 Hz. Calibration was repeated until the 

estimated quality was ‘good’.  

Like the XSens system, the CV system needed to be calibrated to obtain the baseline position of the 

forklift driver. Thus, the participant was asked to sit inside the forklift and remain static in their usual 

sitting posture with hands placed on the thighs and looking straight ahead for 30 seconds. The laptops 

connected to both the systems and the XSens Awinda’s recording and docking station were placed inside 

the forklift for the duration of the task performed. 

Dataset 

The three forklift drivers performed seven different forklift driving tasks within the logistics area of the 

automotive industry, both in indoor and outdoor conditions. In total, 65.17 minutes of data were 

processed. The XSens and CV system data were split into seven parts corresponding to each task. 

Data Processing 

The CV system dataset consisted of RGB images and their corresponding depth maps. Both were rotated 

to counteract the rotated position of the camera, and then the RGB images were processed with OpenPose 
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to obtain the 2D keypoints of eyes, nose, ears, shoulders, neck, elbow, wrists, hips, knees and feet of the 

driver. The resulting 2D keypoints and the corresponding depth values from the depth maps were 

deprojected into the camera coordinate system using the intrinsic camera parameters to obtain 3D 

keypoints.  

For the calibration of the CV system, the coordinates of the hips and the offset values for three joint 

angles (head flexion and extension, trunk flexion and extension, and trunk lateral bending) were 

calculated from the 3D keypoints. The offset values were set as the average of all angle values calculated 

from 15 frames selected from the collected calibration data. The reason for this is that these joint angles, 

by definition, are non-zero in the baseline position. Regarding the hips, they are prone to occlusions due 

to arm movement while steering the vehicle but remain mostly static during driving. Hence, the hip 

coordinates were calculated at the beginning and fixed throughout the task.  

After calibration, the joint angles were calculated similar to other publications (Kim et al., 2021; Van 

Crombrugge et al., 2022) for the remaining frames using the fixed hip coordinates, followed by the 

application of the previously calculated offset values. The joint angle values from XSens were exported 

from the MVN Analyze Pro software. The XSens C1 Head Flexion/Extension angle was also offset to 

counterbalance the non-zero angle in the baseline position. The joint angles and the corresponding XSens 

angles for comparison are defined in Table 1. 

Table 1. Joint angle equations, were 𝑣_(𝑖, 𝑗) is a vector pointing from joint 𝑖 to joint 𝑗, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is a line 

pointing up (opposite of the 𝑦-axis), and 𝑝𝑟𝑜𝑗(𝑣_(𝑖, 𝑗), 𝑛) is an orthogonal projection of vector 𝑚 on 𝑛. 

Joint Angle Equation XSens Angle 

Head lateral 

bending 
𝑎𝑛𝑔𝑙𝑒(𝑝𝑟𝑜𝑗(𝑣_(𝑙𝑒𝑓𝑡 𝑒𝑦𝑒, 𝑟𝑖𝑔ℎ𝑡 𝑒𝑦𝑒), 𝑣_(𝑛𝑒𝑐𝑘, 𝑙𝑒𝑓𝑡 𝑒𝑦𝑒) ⨯

 𝑣_(𝑛𝑒𝑐𝑘, 𝑟𝑖𝑔ℎ𝑡 𝑒𝑦𝑒) ),  

𝑝𝑟𝑜𝑗(𝑣_(𝑙𝑒𝑓𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟, 𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟), 𝑣_(𝑛𝑒𝑐𝑘, 𝑙𝑒𝑓𝑡 𝑒𝑦𝑒) ⨯

 𝑣_(𝑛𝑒𝑐𝑘, 𝑟𝑖𝑔ℎ𝑡 𝑒𝑦𝑒) )) 

C1 Head Lateral 

Bending 

Head flexion/ 

extension 
𝑎𝑛𝑔𝑙𝑒(𝑣_(𝑚𝑖𝑑ℎ𝑖𝑝, 𝑛𝑒𝑐𝑘), 𝑣_(𝑛𝑒𝑐𝑘, 𝑛𝑜𝑠𝑒) ) − 𝑜𝑓𝑓𝑠𝑒𝑡 C1 Head Flexion/ 

Extension + 10° 

Head twist 90° − 𝑎𝑛𝑔𝑙𝑒(𝑝𝑟𝑜𝑗(𝑣_(𝑛𝑒𝑐𝑘, 𝑛𝑜𝑠𝑒), 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒),

𝑝𝑟𝑜𝑗( 𝑣_(𝑙𝑒𝑓𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟, 𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟), 𝑥𝑧

− 𝑝𝑙𝑎𝑛𝑒)) 

C1 Head Axial Rotation 

Trunk lateral 

bending 
𝑎𝑛𝑔𝑙𝑒(𝑝𝑟𝑜𝑗(𝑣_(𝑚𝑖𝑑ℎ𝑖𝑝, 𝑛𝑒𝑐𝑘), 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒), 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙) − 𝑜𝑓𝑓𝑠𝑒𝑡 Vertical_T8 Lateral 

Bending 

Trunk flexion/ 

extension 
𝑎𝑛𝑔𝑙𝑒(𝑣_(𝑚𝑖𝑑ℎ𝑖𝑝, 𝑛𝑒𝑐𝑘), 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙) − 𝑜𝑓𝑓𝑠𝑒𝑡 Vertical_T8 Flexion/ 

Extension 
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Trunk twist 𝑎𝑛𝑔𝑙𝑒(𝑝𝑟𝑜𝑗(𝑣_(𝑙𝑒𝑓𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟, 𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟), 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒),

𝑝𝑟𝑜𝑗(𝑣_(𝑙𝑒𝑓𝑡 ℎ𝑖𝑝, 𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑝), 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒)) 

Vertical_T8 Axial 

Bending 

The 2D keypoints of the shoulders were prone to self-occlusions by the head while performing twisting or 

bending motions. A self-occlusion correction script was created to assess if the head occluding a shoulder 

based on the depth of the shoulders, nose, and ears. The occlusion was corrected with the depth of the 

other (non-occluded) shoulder. In addition, most of the time the head was occluding the neck keypoint 

because of the perspective from the top, hence it was calculated as the midpoint of the shoulders. The 

outliers which were further than 3 standard deviations from the median of each angle were removed and 

Gaussian smoothing with variance of 2 was applied on the resulting joint angles. The XSens data was 

down sampled to 15 samples per second using Fourier method and synchronized with the CV data by 

manual inspection. 

The CV system results may contain missing values. This can happen because the CV system could not 

detect some of the keypoints needed for angle calculation or because the depth camera could not estimate 

the depth at some of the required joint locations. These missing value frames (MVF) were removed, and 

they were not used for further comparison.   

To apply RAMP for upper body ergonomic assessment, the average of each joint angle was calculated for 

every 15 frames on both CV and XSens data. Then, the RAMP thresholds were applied to generate binary 

data for each joint angle which states if the average angle, in that second is above or below the threshold. 

To evaluate the performance after applying RAMP thresholds, the precision, recall and specificity 

(Hossin & Sulaiman, 2015) were calculated as mentioned in Table 2.  

Table 2. Evaluation Metrics 

Evaluation Metric Formula 

Precision 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

Specificity 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

Note: TP-True Positive, FP-False Positive, TN-True Negative 

Results 

The root mean square error (RMSE) was chosen to assess the closeness of the joint angles between XSens 

and the CV system and it was calculated for every frame per task. The distribution of RMSE of each joint 

angle across tasks is shown in Figure 3. The overall mean of RMSE of all joint angles was 7.1 ± 3.2 °. 
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Figure 3. Distribution of RMSE (°) of joint angles between XSens and CV results across tasks. 

In addition, for every joint angle, the ratio of MVF and total frames of the task was calculated and 

averaged across tasks as shown in Table 3. 

Table 3. Frames with missing values as a percentage of the total number of frames. 

Joint Angle Mean (%) Standard Deviation (%) 

Head lateral 13.27 11.48 

Head flexion/extension 3.55 2.49 

Head twist 5.06 3.61 

Trunk lateral 0.72 1.08 

Trunk flexion/extension 0.72 1.08 

Trunk twist 2.40 1.52 

 

Table 4. Comparison of CV and XSens system after applying RAMP thresholds. 

Joint Angle Precision Recall Specificity 
Mean Absolute Difference (°) 

of FN CV and Threshold 

FN Count 

(secs) 

Head lateral 0.00 0.00 0.99 8.6 ± 1.2 674 

Head flexion 0.00 0.00 0.92 18.0 ± 2.5 3 

Head extension 0.50 0.24 1.00 5.3 ± 3.9 38 

Head twist 0.27 0.75 0.96 7.1 ± 5.9 20 

Trunk lateral - moderate 0.39 0.70 0.85 3.6 ± 2.8 139 

Trunk lateral - considerable  0.00 1.00 14.2 ± 0.8 2 

Trunk flexion - moderate 0.82 0.61 1.00 6.6 ± 3.5 30 

Trunk flexion - considerable   1.00   0 

Trunk extension  0.00 1.00 7.5 ± 7.5 24 

Trunk twist   1.00  0 
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The postures where the angle is greater than the RAMP thresholds are considered bad postures. The 

seconds where the XSens found bad postures and the CV system missed are false negatives (FN). These 

FN seconds were investigated to understand how close the CV system angles are to the threshold as 

shown in Table 4. 

Discussion and Conclusions 

The CV system was robust to dynamic light conditions and the mean RMSE of all joint angles across 

different tasks is in line with earlier studies (Kim et al., 2021; Lin et al., 2022). Figure 3 shows that in 

comparison with other joint angles, the head flexion/extension angle had higher variance across tasks. The 

angle difference in two tasks suddenly increased after a period of time, which might be caused by a 

change of hip position. Also, on isolated occasions the head flexion angle difference was unusually high, 

which needs further inspection as it is inconsistent with the general behavior. Furthermore, the head twist 

formula estimates higher twist angles when the nose is moving along with other motions, which causes 

overestimation in specific cases. In similar terms, the back twist is estimated from the shoulders which are 

prone to more variations due to arm movements compared to the XSens sensors placed directly on the 

back. The results in Table 3 show that the angle with most MVF is head lateral bending. This can be 

attributed to at least one of the eyes often going out of the camera view when performing head twist or 

flexion. 

From the binary data generated after applying the RAMP thresholds summarized in Table 4, it can be 

seen that the system can identify many bad postures for head twist and trunk lateral – moderate, but it also 

falsely classifies many postures as bad due to overestimation and aforementioned issues. Identification of 

bad postures is more precise in trunk flexion – moderate, but many bad postures were also missed. This is 

due to self-occlusion of the shoulders which directly affects the neck keypoint and results in 

underestimation of the angle after correcting the occlusions. Head flexion and extension are affected in a 

similar way. In the case of head lateral bending, the system performs poorly as the calculated angles are 

overall very small compared to XSens. Trunk lateral – considerable, suffered from underestimation due to 

the operator going out of the camera field of view, where the CV system predicted the neck and shoulder 

keypoints closer to the center of the image and resulted in classification as moderate instead of 

considerable lateral bending. For trunk extension, apart from one task, the RMSE between the systems 

was low, indicating that the CV values were close to XSens, but just under the threshold. No bad postures 

were identified by both systems in the cases of trunk flexion - considerable and twist. 
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Table 4 also shows that in most of the FN seconds the difference between the CV system and the 

respective RAMP angle threshold was close to the average error of the system. This indicates that the CV 

system would find more of the bad postures identified by XSens if the thresholds applied to the CV data 

are adjusted using methods like receiver operating characteristic (ROC) curve (Metz, 1978). However, a 

suitable balance between the precision and recall has to be found along with ergonomists. This behavior 

can be expected not only when using RAMP, but also any other ergonomic method that applies hard angle 

thresholds. 

Also, issues with the XSens data were identified which brings up the question of its validity in certain 

moments. For example, calibration needed several attempts to achieve good quality similar to (Zelck et 

al., 2022). Even then, visual inspection showed issues where the XSens representation of the body did not 

correspond to the operator’s static pose. This also existed in the recordings where certain postures 

recorded by XSens were incorrect which was identified by visual inspection. Lastly, sudden changes in 

angle and glitches were discovered with no apparent motion performed by the operator that can be seen in 

the video. However, these problems were not noticed during simulations in the lab. The reason might be 

magnetic disturbances in the industry environment, vibrations, or motions that caused the sensors to move 

from their original position. 

Based on the findings discussed above, this study was unable to confirm the applicability of the proposed 

CV system directly for RAMP ergonomic assessment in industry, even though previous studies from lab 

environments suggested otherwise (Kim et al., 2021; Lin et al., 2022; Massiris Fernández et al., 2020). 

Even though the CV system closely followed the trend of the XSens angles, the performance of the CV 

system after applying RAMP thresholds resulted in vastly different outcomes because of self-occlusion, 

camera perspective and field of view, angle calculation methods and the hard angle thresholds. However, 

there were inconsistencies with the XSens system which may have affected the overall results. 

Future work should investigate the reliability of XSens data in order to determine the limitations of the 

CV system. The digital human modeling (DHM) technique could be used to model the data from both the 

systems for comparison which might reduce the noise and maintain appropriate postures. In addition, 

further research should be done into alternative camera positions, handling of self-occlusions and 

utilization of more cameras within the surrounding environment. Lastly, threshold adjustments can be 

made in consultation with ergonomists, considering that the calculated angles overall closely match 

XSens. The findings of this study suggest that obtaining results through CV methods may be more 

repeatable, faster and efficient compared to manual assessment of occupational ergonomics. This can 
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catalyze the identification and reduction of injuries and illnesses as well as promote worker’s safety and 

comfort. 
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