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Abstract  

Human body finite element (FE) models can be used for seating comfort assessment by providing 

biomechanical related parameters such as internal loads and soft-tissue deformations. However, most of the 

published models were only validated under a condition far from a real seating situation. Their ability to be 

repositioned may also be limited. In recent years, an open-source PIPER software package has been 

developed to help personalize and position Human Body Models (HBMs) for crash simulation. We have 

morphed the PIPER Child model into an adult FE model. In this paper, we present how the initially morphed 

adult FE model was adapted for assessing seating comfort and validated for different seating conditions. 

Experimental data was collected using a reconfigurable experimental seat and pressure mats. Four seat 

configurations were defined with the seat pan angle (SPA) from 0° to 15° (5° in steps) and seat pan to seat 

backrest angle (SP2BA) kept to 100°. Simulated results in terms of seat contact area (ContactA), peak 

pressure (PeakP), mean pressure (MeanP), and pressure profiles showed good agreement with experimental 

observations. The full-body FE model developed and validated in this work will be used as a reference for 

further development of scalable and positionable models using the PIPER software framework. The model 

will be open source to facilitate reuse and further improvements. 
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Introduction  

People spend more and more time in a seating posture for transportation, office work, or leisure (Le and 

Marras, 2016). Improving seating comfort is not only a sale argument for seat manufacturers (Grujicic et 

al., 2009) but also important for consumers and healthcare-related fields (Oomens et al., 2015). Sustained 

loads on the soft tissue of the buttocks may cause seating discomfort or even physiological problems (Elsner 

& Gefen, 2008), especially for drivers and wheel-chair users (Cheng et al., 2018). However, soft tissue 

deformations and internal loading in terms of strain, and stress, which are generally considered relevant for 

seating discomfort assessment, cannot be all directly measured in vivo (De Looze et al., 2003).  
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With the development of computational capability, more and more researches have been devoted to build 

Finite Element (FE) HBM for assessing seating discomfort (Du et al., 2013; Levy et al., 2014). However, 

most of these models were not validated under real seating conditions including several postures, thus 

limiting their application to real world. For example, Al-Dirini et al. (2016) validated the model using only 

a rigid seat pan without a soft cushion. Huang et al. (2015) and Du et al. (2013) validated their models with 

a real seat under only one seat configuration. However, more seating conditions are needed for validating 

their sensitivity to seat parameter changes for seat comfort assessment.  

In recent years, an open-source software package has been developed to personalize and position HBMs 

for crash simulation (available at www-piper-project.org). We also recently described the ongoing 

development of a full body adult FE model, morphed from the PIPER Child model (Liu et al., 2020). In 

this paper, we present how the initially morphed model was further adapted for assessing seating comfort 

at first, and then the preliminary validation results using the experimental data collected from a 

reconfigurable seat.  

Model development 

Developing a full-body finite element model is a time-consuming and complex process. Therefore, an open-

source model, the PIPER Child model for impact simulation, was morphed into an adult-sized model. The 

baseline model corresponds to a 6 years old child, 1146 mm in stature. It includes 353 parts (deformable 

skull, brain, abdomen muscles, internal organs, neck, neck muscles, and pelvis, etc.) for a total of 531000 

elements. The model was validated under multiple conditions for traffic injury assessment such as side-

impact, and regional part validation including head, femur, neck, etc.(Beillas et al., 2016).  

Brief description of the initial morphing  

As presented in (Liu et al., 2020), we morphed the PIPER child model into an adult male. The morphing 

target was a male aged 40 years, 1740 mm in stature and 77.6 kg in weight. The morphing was based on 

different types of data collected on the same person. The spine and pelvis were obtained from the 3D 

reconstructions of the target subject who participated in a MRI study corresponding to a seated position 

with seat pan to backrest angle of 100° (Beillas et al., 2009). The same seating condition was reproduced 

for scanning the external body shape with a handheld laser scanner. After building the geometrical targets, 

the model was morphed by kriging interpolation using the PIPER software. The geometric errors and the 

elements quality were checked, and the model was used as the basis for further work. 

Model adaptation 
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Numerous changes were carried out on the morphed model to adapt it to the comfort application. The main 

objectives were to (1) symmetrize it (2) reduce its computational cost (3) refine the mesh in regions of 

interest for seating comfort (4) adapt its material properties, which were initially selected for high-speed 

impact. 

The work was initiated by symmetrizing the model with respect to the sagittal plane. The PIPER child 

model geometry and mesh are mostly symmetric. The exceptions are (1) the internal organs, which are not 

expected to be symmetric and will not be symmetrized, and (2) the mesh of some vertebrae and of the 

sternoclavicular ligaments, which will be symmetrized. Furthermore, the target geometry was directly 

derived from experimental data and hence, the geometry of the morphed model is not symmetric.  

The vertebral meshes from the 12th thoracic vertebra (T12) to the 5th lumbar vertebra (L5) were first 

symmetrized within the PIPER child model (including intervertebral discs). For this, one side of the 

vertebral mesh was kept. This half side was used to generate solid elements before symmetrizing it (Figure 

1 a and b). The sternoclavicular ligaments were also symmetrized by keeping one of the two sides. 

Then, as the morphed model uses the same numbering scheme as the child model, the mesh symmetry of 

the child model were used to symmetrize the morphed model. First, the pairs of nodes that are symmetric 

with respect to the midsagittal plane and nodes laying on the midsagittal plane were identified in the child 

model. This allowed computing symmetric positions of these nodes on the morphed model by averaging 

(e.g. skeletal symmetry). However, this cannot be directly applied to the model as this approach would not 

transform the non-symmetric structures (e.g. internal organs). Hence, the symmetrized nodes were used as 

control points to transform the model using the Kriging in PIPER. 
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Figure 1 Comparison of some body structures before and after adaptation: lumbar vertebrae and intervertebral disc 
before and after symmetrisation (a,b), brain and neck muscles before and after simplifications (c,d),  chest before and 
after simplification (e,f), abodomen before and after simplification (g,h) 

The computational cost was then addressed. Some anatomical components which are marginally relevant 

for seating comfort were deleted, including the brain (initially modeled using hexahedral elements) and 

neck muscles (Figure 1 c and d). The mass of the brain was compensated for by increasing the skull density. 

The internal organs were also simplified into two incompressible controlled volumes described by their 

envelope (similar to airbags): one for the chest (Figure 1 e and f), and one for the abdomen organs (Figure 

1 g and h). The mass of the organs was evenly distributed onto the nodes of the envelopes. The properties 

of the bones were changed to rigid (one rigid body per bone).  

The buttock region was then refined as the simulation of the body and seat interaction in the region of the 

buttocks and thighs is of importance for seating comfort assessment. As shown in Figure 2a, the coccyx of 

the initial child model appears shorter than the one of adults, likely due to the presence of growth cartilage 

in that region (as the coccyx is not fully ossified at 6 years old, it could not be segmented on the CT scan). 

As the coccyx is an important anatomical structure that is susceptible to be involved in pressure ulcer 

(Farshbaf et al., 2013), the coccyx was modified based on adult data. As the pelvic skeleton derived from 

the MRI was in a low resolution, a pelvic segmentation from an adult CT-scan that is a publicly available 

(subject LTE605 available on www.piper-project.org) was scaled and aligned onto the pelvis model (Figure 

2b) and used as a reference to adjust for the structure of the coccyx (Figure 2c). 

 

Figure 2 Replacement of the initial child coccyx by an adult one: the initially morphed pelvis based on the PIPER 
Child model (a), aligning an adult pelvis onto the model (b) and modified pelvis with an adult coccyx (c). 

Then, as depicted in Figure 3, the mesh of the soft tissue underneath the ischial tuberosity (IT) was locally 

refined. This area is important for seating comfort assessments since it is the place with the highest pressure 

and a high risk of pressure ulcers (Tang et al., 2010) with a compressive strain of more than 50% (Elsner 

& Gefen, 2008; Sonenblum et al., 2013).  
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Figure 3 Local refinement of the soft tissue mesh under the ITs (a) mesh of the child model(b) refinement of the local 
mesh of buttocks with the adult model. 

The geometry of the buttocks was obtained by the subject in a kneeling posture using a laser scan. It was 

not the same as the pre-sitting posture. The thickness of tissue was modified referring to the pre-loading 

seated MRI data from a study by (Wang et al., 2021). The shape of the buttocks before and after 

modification are shown in Figure 4. The soft tissue-ischium initial distance was set to 40mm.  

Figure 4 Buttocks shape. (a) the initial model using the kneeling posture obtained buttocks geometry. (b) pre-shaped 
after adaptation 

The soft tissue material model and properties were changed from a simplified rubber to low modulus Neo 

Hookean model as in the work of Janak (2020) on obese modeling. The mass distribution of the model was 

checked and aligned with those by Huang et al. (2015) through adjusting the density of soft tissue and bone. 

The mass proportions are now 7.41%, 16.15%, 51.53%, 4.38% for the head, the lower limbs (thigh, calf, 

and foot), the torso, and the upper limbs (upper arm, forearm, and hands), respectively. Finally, some small 

penetrations and negative volume elements were fixed manually.  

Model validation 

Experimental data collection 

To validate the model, an experiment was carried out with a reconfigurable experimental seat (Beurier et 

al., 2017). The participant was the person whose external scans and internal skeleton information were used 

as targets for the model development (Liu et al., 2020). Two wooden flat rectangular plates covered by a 

(a) (b) 
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foam of 50 mm thick were used for the seat pan (620 by 565 mm) and the seat backrest (550 by 550 mm). 

To measure the contact pressure, two sensor mats (XSENSOR, X3 PRO V6, Canada) were attached to the 

foam. Four configurations were tested varying the seat pan angle (SPA) from 0° (horizontal) to 15° in a 

step of 5°, while the seat pan to backrest angle (SP2BA) was fixed at 100° (Figure 5) corresponding to the 

seating configuration used in the MRI study by Beillas et al (2009). For each configuration, the participant 

was allowed to adjust the seat pan length and the foot support height to be seated comfortably. The subject 

was instructed to half flex his knees and the popliteal to the frontal seat edge was about 40mm.  

 

Figure 5. Experimental seat. 

FE Simulation 

The four experimental seating conditions were simulated with the developed adult model using LS-DYNA 

R11 MPP solver using 64 cores of a cluster. The time step was 2µs. Relaxation was used to help stabilize 

the contact force. The results (pressure, forces, etc.) were gathered at 400ms of simulation time, which took 

about 6 hours of elapsed time on the machines used for each simulation. 

FE model prepositioning and boundary conditions 

The bottom of the seat pan and backrest were fixed. The FE model was pre-positioned so that the back, 

buttocks and thighs were as close as possible to the seat without getting into contact. The feet were put on 

the footrest, which was simulated as a massless rigid body. To better control the distribution of the contact 

forces on the backrest, seat pan and footrest, the actual contact force on the footrest measured 

experimentally was imposed. For this, the footrest was oriented so that its normal direction was the same 

as the contact force measured experimentally. It was allowed to move only in this direction.  
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Automatic surface to surface contact was defined for the backrest and seat pan with a coefficient of friction 

(COF) of 0.1 (covered with the sensor map), while a COF of 0.4 was used for the footrest contact (Derler 

et al., 2008). To reduce computational time and maintain posture, we constrained some bones into one rigid 

body so that no relative movements were allowed between them: the skull and cervical spine, the calf and 

foot (left and right), the upper limb bones including the humerus, radius, ulna, hand (right and left bones). 

A gravity loading environment was applied.  

To obtain the property of the foams on the seat pan and backrest, strain-stress curves were obtained through 

compression tests with a sample size of 8×8×5 cm using an Instron material testing machine. The curves 

are provided in the appendix. 

Data analyses 

Pressure and contact forces were compared between simulations and experiments. Pressure-related 

parameters include contact area (ContactA), mean pressure (MeanP), peak pressure (PeakP), and frontal 

and lateral pressure profiles (summation of pressure in rows and columns). 

Results 

Simulated and measured pressure distributions and profiles on the seat pan and backrest are compared in 

Figure 6 for the four test configurations. FE simulations were able to approach the corresponding measured 

pressure distributions (Figure 6a), with some discrepancies on the thighs and between the ITs. Some 

left/right asymmetry was visible in the experimental data, while the FE model responded symmetrically as 

expected. The differences were more pronounced for the backrest (Figure 6b), with some contacts near the 

pelvis which were not visible in the experiment. Predicted pressure profiles (Figure 6c) were close to the 

experimental data. 
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(a) 

(b) 
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Figure 6. Comparison of simulated pressure distribution and profiles with experimental data for the four seat pan 
angles (SPA: 0°, 5°, 10° and 15°). (a) pressure on the seat pan, (b) pressure on the backrest, (c) lateral (SOC) and 
frontal (SOR) pressure profiles on the seat pan, (d) lateral (SOC) and frontal (SOR) pressure profiles on the backrest. 

The contact area (ContactA); peak pressure (PeakP), mean pressure (MeanP), and shear (SF_SP) and 

normal (NF_SP) forces on the seat pan are summarized in Table 1. Compared to experimental data, the 

simulation had an average error of -3.2%, 3.8%, and 8.1% respectively for contact area, peak pressure, and 

mean pressure. Concerning contact force on the seat pan, simulated shear and normal forces showed the 

(d) 

(c) 
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same trend as experimental observations when increasing the seat pan angle. However, a high error in 

percentage was observed for shear force (up to 37.1%).  

Table 1  Simulated (S) and experimental (E) values of contact area (ContactA), peak (PeakP), and mean pressures 
(MeanP), and contact forces: seat pan shear force (SF_SP), and normal force (NF_SP), as well as the errors (%) of 
simulation relative to experiment. 

SPA ContactA (mm2) PeakP (kPa) MeanP (kPa) SF_SP (N) NF_SP (N) 

(°) (S)             Error (S) (E) Error (S) (E) Error (S) (E) Error (S) (E) Error 

0 162257.7 -4.0 16.8 16.3 3.4 4.6 4.3 8.7 58.7 59.2 -0.5 -709.0 -697.0 -12.0 

5 161128.7 -2.6 17.4 20.0 -12.9 4.5 4.3 6.4 56.1 28 28.1 -689.5 -694.3 4.8 

10 159031.9 -4.8 15.2 15.1 0.8 4.4 4.0 8.5 37.7 0.6 37.1 -661.6 -652.8 -8.8 

15 153225.5 -3.7 15.4 12.4 23.9 4.2 3.9 8.7 31.8 -4.2 36.0 -607.9 -597.4 -10.5 

Mean 158911.0 -3.2 16.2 15.9 3.8 4.6 4.1 8.1 46.1 20.9 25.2 -667.0 -660.4 -6.6 

SD 3480.6 0.8 0.9 2.7 13.2 0.1 0.2 1.0 11.55 25.3 15.2 38.0 40.4 6.7 

Discussion and Conclusions 

Compared to experimental observations, simulated pressure distribution showed good agreement. Although 

the model did not simulate muscle forces, the targeted postures correspond to a relaxed state in which the 

muscle forces were expected to be small. The passive stiffness of the model and the choice of initial 

conditions hence played a role in the response. For example, there could be no contact near the pelvis on 

the backrest if the pelvis was positioned further away from the backrest. Overall, the choice of passive 

properties and boundary conditions appeared reasonable for the relaxed seating with an SP2BA of about 

100°. They may need to be adjusted for postures that would further differ from the validation conditions 

(e.g. more reclined seating).  

According to Figure 6, the simulated backrest pressure distribution and profiles had some differences 

compared to the experiment, especially in the lower back area and near the location of the scapulae. In 

simulations, the lower back was in contact with the backrest, while this was not the case for the experiment. 

This could be because the final loaded spine curvature was used at the preloading and the body may move 

under gravity: In addition, the initially scanned back shape is certainly not the same as the one that the 

subject adopted.  

For the seat pan, the simulated contact areas (ContactA) were slightly smaller than the experimental results 

while the mean pressures (MeanP) were higher. As we can see from Figure 6, the middle area of between 

the two buttocks showed no contact in the simulation, quite different from experimental observations. Soft 

tissues were modeled a homogeneous material assuming an initial no strain / no stress state. More detailed 
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modeling of this area may be useful, including muscles and fat tissues. Most importantly, their initial strain 

states should be considered, as the body shape prior to loading is not known. 

In this preliminary validation, only four configurations were tested with a fixed seat pan to backrest angle 

of 100°. Therefore, more seat configurations are needed to test the effect of seat parameters. Since the 

compression of the soft tissue under the ischial tuberosities is an important factor to evaluate seating 

comfort, the model will be further validated with soft tissue compressive deformations and observed using 

an open MRI (Wang et al., 2021). 

In a summary, a personalized model for seating comfort has been developed and its predictions in terms of 

force and contact pressure distribution were checked against experimental data in four seat conditions. The 

models showed a reasonable agreement and further work will be conducted to expand upon the validation 

with more seating conditions and the analysis of local tissue deformation. The FE model will be published 

under an open source license to facilitate its reuse and improvement. 
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Seat pan and backrest foam strain-stress curves 


