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Abstract 

Pedestrian safety is a central topic in the automotive industry because of the high number of deaths in car-

to-pedestrian accidents. Different systems have been developed to protect pedestrians and other vulnerable 

road users. So-called Active Safety Systems are used to avoid possible collisions with the VRU or to 

mitigate injury severity by reducing the collision speed in case the collision can't longer be prevented. The 

autonomous emergency braking system (AEB) is one of these systems and aims to intervene in conflict 

situations by stopping the car, Haus et al. (2019). The performance assessment of the AEB System can be 

done via virtual simulation. One crucial aspect is the modeling of pedestrian behavior. Current studies use 

a simple pedestrian behavior model, sometimes called a trajectory-based model, in which the pedestrian 

moves with constant speed on a given path and without any interaction with the environment. This study 

investigates how the AEB Performance in virtual environments is influenced by using a more realistic 

pedestrian behavior model based on reinforcement learning approach, a particular Machine Learning branch 

perfectly suited for modeling decision-making processes. For that, a generic AEB-System, the trajectory-

based pedestrian model, and the reinforcement learning model were implemented in CARLA Simulator. A 

scenario catalog was created by varying some parameters and used to evaluate the front collisions with and 

without the AEB system. The study indicates that due to some pedestrian reactions of the reinforcement 

learning model, like unexpected stopping in front of the car, the performance of the AEB-System is reduced. 
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Introduction 

Vulnerable Road Users (VRU) are non or poor-protected road users like pedestrians or users or passengers 

of non-motorized or powered two-wheelers e.g., cyclists or motorcyclists. They accounted for 51,4% of all 

total road fatalities in the European Union in 2021 (Decae, 2022). An Autonomous emergency braking 

(AEB) system, an active safety system used to avoid imminent collisions, can help to reduce this higher 

number of fatalities. Its performance assessment can be done via virtual simulation, but one current 

limitation is the pedestrian representation, which only walks a pre-defined path with constant velocity 

without interacting with the environment. This model is called in trajectory-based model in this study.  

The aim of this paper was to investigate if a pedestrian behavior model with visual perception and 

interaction with the environment and other agents, changes the performance of the AEB-System in a virtual 

simulation. For that, a behavior model based on a reinforcement learning algorithm was developed by 

Phantasma Labs GmbH (https://www.phantasma.global/) and compared with the current trajectory-based 

model. In Methods, the simulation platform used in this study is presented together with the vehicle model 

and the two pedestrian models. In the same section, the generic model of the AEB system, the road network, 

and the parameterization of the simulation for the generation of different scenarios are presented. Finally, 

the results are presented and discussed for both pedestrian models. 

Methods 

Pedestrian Models 

Modeling pedestrian behavior and movement are very complex, especially considering the decision-making 

process. Papadimitriou et al. (2009) highlight the relevance of two aspects of pedestrian behavior to be 

modeled. One of them is the route choice, which regards the decision process about the optimal path 

between the current location and destination. The other one is the crossing behavior regarding the decision 

of when and where to cross the road. They conclude that most pedestrian behavior models treat route choice 

and crossing behavior separately. Teknomo et al. (2016) reviewed different approaches to modeling 

pedestrian movement on a microscopic level, where the pedestrian is treated individually. In general, 

pedestrian movement between a start point and destination uses repulsive effects between the pedestrians 

and other obstacles and in most cases is not validated or calibrated on real pedestrian movement data. The 

pedestrian models available in most vehicle dynamic simulation tools, the trajectory-based models, don’t 

model the route choice or the crossing behavior either. Both aspects are defined before the simulation and 
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implemented manually by giving the pedestrian a pre-defined trajectory. The pedestrian in most cases is 

also devoid of visual perception and internal representation in such a way that the interactions with the 

infrastructure (avoiding obstacles) and with other road users, like vehicles and other pedestrians, is not 

present. Similar models are used in current studies by Lindman et al. (2010), Schanchner et al. (2020), and 

Hamdane et al. (2015).  

Considering that car-to-pedestrian accidents occur in most cases in urban areas (Adminaité-Fodor et al., 

2020) on the road or very close to it and involve mostly just one pedestrian, the microscopic approach is 

the most suitable for this study, Wakim et al. (2004). The pedestrian should also be able to choose different 

routes between start point and destination, exhibit an unsafe crossing behavior, have visual perception, and 

interact with road infrastructure and other agents. No model was found in the literature that achieves all the 

requirements above. For this paper, a new model was developed based on a reinforcement learning (RL) 

method, once this machine learning approach is perfectly suited for modeling decision-making process and 

therefore can directly be employed for the design of pedestrian behavior models. RL is a branch of machine 

learning that faces a real problem from the perspective of a learning agent interacting with its environment 

to achieve a goal. This requires that the agent is capable to perceive the state of the environment and to take 

actions to affect the state. By this category of learning algorithms, the agent always collects new data points 

by directly interacting with the provided environment and later uses them for training. In this study, the 

model will be called reinforcement learning behavior model (RL model) and it was developed for the 

specific traffic scenario analyzed in this paper. The learning agent is the pedestrian that interacts with the 

environment (road infrastructure and vehicles) to achieve the goal, a specific position on the other side of 

the road. During the development of the model, attention was paid to the maximum possible pedestrian-car 

interactions (this also covers the visual perception, internal interpretation, and decision making) and 

plausible, human-like, and diverse trajectories. 

In this study, the trajectory-based model and the RL model were used. By the trajectory-based model 

approach, the pedestrian is spawned at the start position at the beginning of the simulation and crosses the 

road following a pre-defined path perpendicular to the vehicle's direction with a constant speed until it 

reaches the other side of the road. The pedestrian does not interact with the environment and other agents. 

This approach reflects the pedestrian dummy used in the Euro NCAP test protocol (Euro NCAP, 2019). 

The RL model, unlike the previous model, perceives its environment and interacts with other agents. The 

model moves towards in order to reach a defined destination. Unlike the previous model, the RL model 

developed for this study is not capable of being parameterized, so the speed cannot be set, and the starting 

point and destination cannot be changed. 
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Simulation Environment and Road Network 

CARLA, Car Learning to Act, (Dosovistikiy et al., 2017) is an open-source simulator for urban driving. 

CARLA was built in a server-client architecture. The server runs the simulation, rendering the scene and 

the client, a python API, defines the scenario and establishes the interaction between the agent and the 

server. The simulation run in a synchronous mode with a constant time step of Δt = 0.04 s (25 Hz). The 

road network was designed based on the definition from the Euro NCAP test protocol. In addition to this 

definition, a parking area was added with two parking vehicles. In Figure 1 the road in CARLA can be seen. 

 
Figure 1 - A representation of the road. The blue mark indicates the initial position of the RL model and the orange mark of the 
trajectory-based model. The red is the destination of the pedestrian. The green mark is the start position of the vehicle. The road 

has 2 driving lanes and a parking lane with widths of 3.5 m. The arrows indicate the direction of movement of the pedestrian. The 
OpenDRIVE format was used to define the road network. 

AEB System and vehicle model 

Against other simulation platforms, CARLA does not provide a pre-implemented AEB system. A generic 

AEB system was implemented based on the definition given by the harmonization group Prospective 

Effectiveness Assessment for Road Safety (P.E.A.R.S.), Page et al. (2015). The systems consist of an ideal 

sensor, a decision algorithm, and a control algorithm. 

This study assumed an ideal sensor for pedestrian detection. An algorithm was implemented in the client 

that, based on the current position of the vehicle, calculates the field of view of the sensor as an arc of a 

circle using the maximum range and azimuth angle, see Figure 2 (a). At each timestep, the algorithm checks 

if the pedestrian is inside of the field of view using the current pedestrian position. In a positive case, the 

pedestrian is considered to have been detected by the sensor and a signal is sent to the decision algorithm. 

The decision algorithm defines the intervention strategy of the AEB. It is based on the time-to-collision 

(TTC) and on the detection of the pedestrian. This calculation holds if the vector of relative velocity, 𝑣⃗𝑣𝑟𝑟𝑟𝑟𝑟𝑟 ≔
 𝑣⃗𝑣𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣⃗𝑣𝑝𝑝𝑝𝑝𝑝𝑝 is in the same direction as the relative position 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐.  Equation 1 hold: 
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𝑣⃗𝑣𝑟𝑟𝑟𝑟𝑟𝑟  𝑇𝑇𝑇𝑇𝑇𝑇 =     𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                                                                                            (1) 

Once the pedestrian is inside of the field of view and the TTC gets equal to or smaller than 1.0 s, the vehicle 

starts the braking process. The control algorithm calculates the vehicle speed at each time step. By normal 

driving, the vehicle drives at a constant speed. Once the AEB is activated the new car velocity based on the 

current deceleration is calculated and applied to the vehicle. The deceleration profile is defined by an 

actuator delay, a build-up time, and a maximal deceleration. The deceleration increase over time is modeled 

to be linear until the maximum value. The deceleration profile can be seen in Figure 2 (b). Two settings for 

the AEB system were evaluated in this study (cf. Table1), one based on P.E.A.R.S.  and the other based on 

the setting applied in Schachner et al. (2020).  

 
Figure 2 - (a) - Field of View of the ideal perception systems. It is parametrized through azimuth angle 𝛼𝛼 and maximum range r. 

At each time step is checked based on the current position of the pedestrian and the vehicle if the pedestrian is in the sensor's 
Field-of-View. (b)The deceleration profile for settings 1. It is divided into three steps. It is divided into three steps: actuator 

delay, build up time (deceleration increases linearly with the time), and the full brake (maximum deceleration is achieved and 
stays constant until the vehicle stands still). 

Table 1: AEB parameter settings 

Parameters Maximum 
deceleration  

Build-up 
time 

Actuator 
delay 

Braking 
gradient 

Maximum 
range 

Azimuth angle 

Settings 1 8,8 𝑚𝑚
𝑠𝑠2

 0,4 s 0,2 s 24,525 𝑚𝑚
𝑠𝑠3

 60 m 60 ° 
Settings 2 7,0 𝑚𝑚

𝑠𝑠2
 0,35 s 0,25 s  20  𝑚𝑚

𝑠𝑠3
 60 m 60 ° 

Scenario Generation 

One approach to generate scenarios in order to assess the performance of the AEB system is to reproduce 

conflict scenarios based on accident data, Jeppsson et al. (2018), Gruber et al. (2019), Li et al. (2021). In 

this case, the pedestrian follows a given trajectory. Schachner et al. (2020) propose a different approach 
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generating a scenario catalog of critical car-pedestrian conflict situations by varying the following 

parameters: vehicle speed, pedestrian speed, and pedestrian waiting time. The trajectory for vehicle and 

pedestrian was previously defined. A similar approach was implemented in this study with some adaptations 

considering some constraints of the RL behavior model.  The base scenario was inspired by the Euro NCAP 

test cases Car-Pedestrian Nearside (CPNA) and Car-Pedestrian Farside (CPFA). Two conflict situations 

were simulated. In conflict situation A the vehicle drives forward on a straight road, and the pedestrian was 

crossing the road coming from the vehicle's nearside. This conflict scenario was simulated with both 

pedestrian models. In conflict situation B the vehicle drives forward on a straight road, and the pedestrian 

was crossing the road coming from the vehicle's farside. This conflict scenario was simulated only with the 

RL model. The parameters used to generate scenarios with the trajectory-based model and RL model can 

be found in Table 2. For the RL model, no pedestrian waiting time is possible since setting this as a tunable 

parameter is not possible, as well as the constant pedestrian speed. Instead, the waiting time was applied to 

the vehicle. The car waiting time was extended to 8 s, to generate more interaction between pedestrian and 

higher vehicle speeds. 

Table 2: Parameters to generate different conflict scenarios for trajectory-based pedestrian model and RL model. 

Parameter Value Step size 
Trajectory-based pedestrian model 

Vehicle speed [km/h] 10 – 60 2,5 km/h 
Pedestrian speed [km/h] 1 - 12 1 km/h 

Pedestrian waiting time [s] 0.1 – 3.6  0.5 s 
Reinforcement Learning behavior model 

Vehicle speed [km/h] 10 – 60 2,5 km/h 
vehicle waiting time [s] 0 – 8  0.2 s 

Results 

The performance of the AEB was evaluated by comparing the number of frontal collisions between the 

baseline simulations (vehicle without an AEB system) and the simulations with the AEB system in conflict 

situations A and B. The results discussed here are referent to the AEB system with settings 1. Tables 3 and 

4 show all results including the AEB system with settings 2.  

Table 3: Results trajectory-based pedestrian model 

 Baseline  AEB System, setting 1 AEB System, setting 2 
Number of scenarios 2016 2016 2016 

front collisions 201 123 162 
Percentage of front collisions 10 % 6,1% 8,0% 

Collision reduction due the AEB system - 38,8% 19,4% 

As expected, the results with a lower maximal deceleration and higher actuator delay led to lower 

performance. In 2016 baseline simulations with the trajectory-based model, 201 ended in front collisions. 

This number was reduced to 123 with the AEB system, a reduction from 38,8%. This result agrees with the 



7th International Digital Human Modeling Symposium (DHM 2022) 

7 

literature, Lindman et al. (2010), Handame et al. (2015), Gruber et al. (2019), Schachner et al. (2020) that 

goes from 20% up to 50%. With the RL model, a total of 862 baseline scenarios were generated resulting 

in 182 frontal collisions, generating 10% more collisions concerning the total, than in the trajectory-based 

pedestrian model. This higher number of collisions is due to the unsafe behavior of the pedestrian. The 

pedestrian's trajectories make the pedestrian stay more time on the road in the same lane as the vehicle, see 

figure 3 (a). The average pedestrian speed over time is shown in Figure 3 (b).  

 
Figure 3 - (a) Pedestrian path over all simulations scenario A; (b) Pedestrian average speed 

The AEB system reduced the number of front collisions to 108, a reduction from 40,6% similar to the 

results of the trajectory-based model. Unfortunately, in most cases of conflict situation A, the pedestrian 

crosses the road with his back to the approaching vehicle. Once the field of view of the pedestrian has an 

opening angle of 180°, he was not able to see the car and then did not react to it. To force this situation, the 

conflict situation B was simulated, where the vehicle was in the field of view of the pedestrian. In this 

situation, there were 191 front collisions in the baseline simulations and 138 with the AEB, a reduction 

from 27,7%. 

Table 4: Results reinforcement learning behavior model 

 Baseline, 
Scenario 
A 

Baseline, 
Scenario B 

AEB System, 
Scenario A, 
setting 1 

AEB System, 
Scenario B, 
setting 1 

AEB System, 
Scenario A, 
setting 2 

AEB System, 
Scenario B, 
setting 2 

Number of simulations 861 861 861 861 861 861 
front collisions 182  191 108 138 140 149 

Percentage of front collisions 21,1% 22,2% 12,5% 16% 16,2% 17,3% 
Collision reduction due the 

AEB system 
- - 40,6% 27,7% 23,1% 21,9% 

 

Discussion and Conclusions 

All behavior shown were considered human-like, once he didn’t walk into stationary objects, moves with 

an average speed not too fast or too slow, and didn’t shake, walk laterally or backward. It was observed 

that the RL behavior model shows a higher variability in the trajectories when the car is in the field of view 
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of the pedestrian. The pedestrian's most common reactions to the approaching vehicle were 

“waiting/looking around”,” slowing down”, “moving forward” and “standing still”. The “standing still” 

behavior together with the fact that the pedestrian walks in the opposite direction of the car in conflict 

situation B was one of main the causes of frontal collisions. The reinforcement learning behavior model 

showed to be useful to evaluate a generic AEB system by generating more collision and different corner 

cases due to the different trajectories and their interactions with the vehicle. These interactions have 

decreased the performance of the AEB system. It needs to be considered that the model was not trained for 

conflict situation B and the performance of the behavior could not be guaranteed in this situation. Further 

development of the model in this direction should be considered for future works. Another enhancement to 

the current study would be to include more pedestrians crossing the road, getting conflict scenarios closer 

to real-world situations. The vehicle model also needs to be improved with a better vehicle dynamic model. 

Acknowledgments 

The pedestrian behavior model developed using reinforcement learning approach were acquired from 

Phantasma Labs Gmbh in a proof-of-concept for ZF Friedrichshafen AG. 

References 

Adminaité-Fodor,D., & Jost, G., (2020). HOW SAFE IS WALKING AND CYCLING IN EUROPE?, PIN 

Flash Report 38, January 2020 – European Transport Safety Council. https://etsc.eu/wp-

content/uploads/PIN-Flash-38_FINAL.pdf 

Decae, R. (2022). Annual statistical report on road safety in the EU, 2021. European Road Safety 

Observatory. Brussels, European Commission, Directorate General for Transport. https://road-

safety.transport.ec.europa.eu/statistics-and-analysis/data-and-analysis/annual-statistical-report_en 

Dosovistikiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V. (2017). CARLA: An Open Urban Driving 

Simulator. Proceedings of the 1st Annual Conference on Robot Learning. PMLR Vol. 78 of Proceedings of 

Machine Learning research, pp 1-16.  https://doi.org/10.48550/arXiv.1711.03938 

Euro NCAP, 2019, Test Protocol – AEB VRU Systems (Online). 

https://cdn.euroncap.com/media/62795/euro-ncap-aeb-vru-test-protocol-v304.pdf (Acessed 09 june 2022). 

Gruber, M., Kolk, H., Tomasch, E., Feist, F., Klug, C., Schneider, A., Roth, F., Labenski, V., Shanmugam, 

K., Lindman, M., & Fredriksson, A. (2019). The effect of p-aeb system parameters on the effectiveness for 

real world pedestrian accidents. The 26th International Technical Conference and exhibition on the 

https://doi.org/10.48550/arXiv.1711.03938
https://cdn.euroncap.com/media/62795/euro-ncap-aeb-vru-test-protocol-v304.pdf


7th International Digital Human Modeling Symposium (DHM 2022) 

9 

Enhanced Safety of Vehicles (ESV), Pages 1-16. https://graz.pure.elsevier.com/en/publications/the-effect-

of-p-aeb-system-parameters-on-the-effectiveness-for-re 

Hamdane, H., Serre, T., Masson, C., & Anderson, R. (2015). Issues and challenges for pedestrian active 

safety systems based on real world accidents. Accident Analysis & Prevention, Volume 82, 53-60. 

https://doi.org/10.1016/j.aap.2015.05.014 

Jeppsson, H., Östling, M., & Lubbe, N. (2018). Real life safety benefits of increasing brake deceleration in 

car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking. Accident Analysis & Prevention, 

Volume 111, 311-320, https://doi.org/10.1016/j.aap.2017.12.001 

Lindman, M., Oedblom, A., Bergvall, E., Eidehall, A., Svanberg, B., & Lukaszewicz, T. (2010). Benefit 

estimation model for pedestrian auto brake functionality. 4th International Conference on ESAR, (77). 

http://worldcat.org/issn/09439307 

Page, Y., Fahrenkrog, F., Fiorentino, A., Gwehenberger, Helmer, T., Lindman, M., op den Camp, Lex van 

Rooij, O., Punch, S., Fränzle, M., Sander, U., & Wimmer, P. (2015). A comprehensive and harmonized 

method for assessing the effectiveness of advanced driver assistance systems by virtual simulation: the 

p.e.a.r.s. initiative. The 24th ESV Conference Proceedings, 1-12. 

https://graz.pure.elsevier.com/de/publications/a-comprehensive-and-harmonized-method-for-assessing-

the-effective 

Papadimitriou, E., Yannis, G., & Golias J. (2009). A critical assessment of pedestrian behaviour models. 

Transportation Research Part F 12, 242-255, https://doi.org/10.1016/j.trf.2008.12.004 

Rasouli, A., Kotsureba, I., K. Tsotsos, J.K., 2018. Understanding pedestrian behavior in complex Traffic 

Scenes. IEEE Transactions on Intelligent Vehicles, volume 3, Issue:1, pages 61-70, 

http://dx.doi.org/10.1109/TIV.2017.2788193 

Schachner, M., Sinz, W., Thomson,R.,  & Klug, C. (2020). Development and evaluation of potential 

accident scenarios involving pedestrian and AEB-equipped vehicles to demonstrate the efficiency of an 

enhanced open-source simulation framework. Accident Analysis and Prevention, 148. 

https://doi.org/10.1016/j.aap.2020.105831 

Haus, S.H., Sherony, R., & Gabler, H.C. (2019) Estimated benefit of automated emergency braking systems 

for vehicle-pedestrian crashes in the United States. Traffic Injury Prevention. 2019, 20(sup1), 171-176. 

DOI: 10.1080/15389588.2019.1602729 

https://doi.org/10.1016/j.aap.2015.05.014
https://doi.org/10.1016/j.aap.2017.12.001
http://worldcat.org/issn/09439307
https://doi.org/10.1016/j.trf.2008.12.004
http://dx.doi.org/10.1109/TIV.2017.2788193
https://doi.org/10.1016/j.aap.2020.105831


7th International Digital Human Modeling Symposium (DHM 2022) 

10 

Teknomo, K., Takeyama, Y., & Inamura, H. (2016). Review on Microscopic Pedestrian Model. 

Proceedings Japan Society of Civil Engineering Conference.  https://doi.org/10.48550/arXiv.1609.01808 

Wakim, C.F., Capperon, S., & Oksman, J. (2004). A Markovian model of pedestrian behavior. IEEE 
International Conference on Systems, Man and Cybernetics, 4, 4028-4033 vol. 4. 
https://doi.org/10.1109/ICSMC.2004.1400974 

https://doi.org/10.48550/arXiv.1609.01808

	Abstract
	Introduction
	Methods
	Pedestrian Models
	Simulation Environment and Road Network
	AEB System and vehicle model
	Scenario Generation

	Results
	Discussion and Conclusions
	Acknowledgments
	References

