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Abstract 
 
In the fall of 2013, the Electrical Engineering department at the University of Minnesota Duluth 
reconfigured its microcontroller instructional laboratory to use the AVR ATmega32 
microcontroller from Atmel for the first time.  This change was prompted by pressure from 
students, who displayed considerable interest in the AVR family of processors due to its use in 
popular Arduino microcomputer systems.  In response to this expressed interest from students, 
the microcontroller lab was redesigned around this new processor. 
 
Atmel’s ATmega32 is an 8-bit RISC processor, based on Harvard architecture.  This new 
hardware replaced systems using Freescale’s S12 processor, which is a 16-bit CISC processor, 
based on Princeton architecture.  Thus, this change was a fundamental shift on at least three axes 
of computer characteristics.  Was this change a gain or a loss on each of those three axes?  
Experience this year with teaching the lab using the ATmega32 has been generally positive, and 
this paper reports that experience in making the switch from the S12 to the ATmega32. 
 
Despite the fundamental architectural differences between the former processor (S12) and the 
new processor (ATmega32), there are many similarities between the processors as well.  The 
hardware features of the ATmega32 mimic the S12’s features almost exactly, although the 
ATmega32 generally contains less of each feature, such as memory, I/O ports, timing features, 
etc.  Many of the resources of the S12 were unused and wasted in lab exercises in the past.  The 
scaled-back ATmega32, with basically the same features but in less abundance, is a better match 
to the instructional needs of this lab.  Students feel they are getting a more complete exposure to 
the ATmega32, since nearly all the resources of the processor have been used in lab exercises, 
whereas many of the resources of the S12 were ignored in lab assignments because they 
exceeded the needs of the lab. 
 
This paper will address the adaptations that were made in the structure and pedagogy of the 
microcontroller course to implement the change in processors from the S12 to the ATmega32.  It 
will document some of the troubles and surprises encountered along the way, and should provide 
some guidance for others contemplating such a change in their microcontroller labs. 
 
Setting 
 
The “Microprocessor Systems” course at the University of Minnesota Duluth is a sophomore-
level required course in the Electrical Engineering program intended to teach students to 
program in assembly language.  It uses as prerequisite a first course in digital circuit design, 
basically just to acquaint students with digital terminology and with the logical functions AND, 
OR, NOT, and their derivatives.  Over the years the course has used a variety of microprocessors 
and microcontrollers as foundation for the laboratory, to provide specific examples of the topics 
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discussed in class.  Most recently, the course has used the S12 microcontroller from Freescale as 
the vehicle for lab experiments.  Due to the popularity of the Arduino microcomputer systems for 
senior projects, students asked to change the processor used to the ATmega32, a member of the 
Atmel AVR family of processors, as used in the Arduino.  In response to that student request, the 
course did adopt the new processor in the fall of 2013, replacing the S12.   
 
The ATmega32 is architecturally different from the S12 in at least three important ways.  Firstly, 
the ATmega32 is an 8-bit processor, meaning that its instructions operate primarily on byte-sized 
data, whereas the S12 is a 16-bit processor whose instructions operate primarily on 16 bits at a 
time.  Secondly, the ATmega32 uses a Harvard architecture, meaning that it requires separate 
memory for storing program instructions, distinct from the memory used to store data, whereas 
the S12 uses a Princeton architecture processor that combines instructions and data in a single 
memory.  Finally, The ATmega32 is clearly a Reduced Instruction Set Computer (RISC), 
meaning that its instructions each perform streamlined, minimal tasks, whereas the S12 is clearly 
a Complex Instruction Set Computer (CISC) executing instructions that individually perform 
complicated tasks.  Despite these three fundamental differences, however, the ATmega32 and 
the S12 are remarkably similar in their hardware resources available to the programmer. 
 
8-bit vs. 16-bit 
 
Switching to the ATmega32 from the S12 involved changing from the S12’s 16-bit architecture 
to the ATmega32’s 8-bit architecture.  At first glance, this seems to be a step backwards, since in 
considering computer performance, the more bits operated upon at once, the better.  Shouldn’t 
the change in processor have moved in the direction of 32-bit or even larger operand sizes, rather 
than changing from 16 bits to 8 bits?  However, consider the goal of this “Microprocessor 
Systems” course.  The goal is not to maximize processing power, or achieve maximum 
resolution in some mathematical calculation.  The goal is to learn to program in assembly 
language, and most applications that these students will face will involve small scale situations.  
Variables will rarely need to exceed values that can be stored in just 8 bits, and using more bits 
just wastes hardware and causes additional confusion.  Using an 8-bit processor is actually a 
pedagogical advantage in this class because high performance is not a goal of the course. 
 
In the past when using the 16-bit S12 processor, probably the most confusing task that students 
confronted was keeping track of which registers in the S12 were 16-bit registers, and which were 
8-bit registers.  The difference is crucial, of course, but students did not appreciate the 
importance of distinguishing them, probably due to students’ experience in programming using 
high-level languages where the storage size of operands is rarely considered.  By contrast, the   
8-bit ATmega32 has only 8-bit registers used for data, avoiding the confusion altogether.  A few 
specific instructions do use 16-bit operands for special applications, but those instructions are 
easily distinguished so that the level of confusion on that front is markedly reduced. 
 
Harvard vs. Princeton Architecture 
 
The ATmega32 microcontroller uses Harvard architecture, meaning that storage for instructions 
that make up the program and storage for data operated upon by that program use physically 
separate memory structures.  The “program memory” in the ATmega32 is 32K bytes in size, 
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actually organized as 16K 16-bit words.  The “data memory” in the ATmega32 is 2K bytes of 
RAM plus 32 8-bit general-purpose registers plus 64 8-bit input/output registers, all byte-
organized.  Harvard architecture proponents tout improved performance because the program 
memory and data memory are separate and can be accessed independently, allowing for parallel 
simultaneous operations on the two memories.  However, using a separate memory to store the 
program being executed restricts certain types of applications.  In particular, “self-modifying” 
programs where the operation of the program actually changes the instructions in the program 
being executed, are generally not possible with Harvard architecture computers.  Such “tricky” 
programming techniques are generally not a good idea anyway, but related situations are 
awkward to implement.  For example, writing a program that itself allows development of and 
debugging a different program in memory, generally is not easy.  Instead, one must rely on 
software tools provided by the microcontroller manufacturer to download programs into program 
memory and manipulate them there.  Fortunately, Atmel does provide good software tools for 
program development and downloading into program memory, which avoids this problem. 
 
By contrast, the S12 uses a Princeton architecture in which a single memory structure holds both 
the instructions that constitute the program and the data being manipulated.  The S12 as 
previously used in this class contained 12K bytes of storage, and it was up to the programmer to 
keep data in a separate area of memory from the program.  The fact that there is no difference in 
memory used to store instructions and that used to store data means that programs can freely 
manipulate instructions as needed, so that program development environments can be created 
easily.  However, it is also easy to unintentionally modify instructions when a program 
misbehaves, or when some event such as a stack overflow occurs, so in Princeton architectures 
the program is often accidently corrupted by inexpert programmers. 
 
RISC vs. CISC 
 
The question of whether RISC or CISC architecture is the better choice for computer design is an 
ongoing and unresolved debate.  The ATmega32 is a clear example of RISC design.  The S12 is 
a clear example of the CISC approach. 
 
In a RISC design, instructions executed by the processor are streamlined to the point that each 
instruction actually does very little.  Large tasks are accomplished by using many individual 
instructions to get the job done.  Programs in RISC processors therefore tend to be longer and 
use more program memory because more of these minimal instructions are needed to accomplish 
the task.  RISC proponents acknowledge that their programs are longer, but they argue that since 
each instruction does very little, the instructions can be blazingly fast, so that even though more 
instructions are needed, the overall performance is better because each instruction is so fast. 
 
In a CISC design, instructions are specialized to perform specific tasks well.  Each instruction 
may perform several steps of processing, so that fewer instructions are needed to complete a 
given task.  However, because the instructions tend to be complicated, they must execute more 
slowly.  CISC proponents acknowledge that their instructions execute more slowly, but argue 
that because they need fewer instructions (and thus less memory) in the program for a given task, 
the overall performance is better. 
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Who wins, RISC or CISC?  There is no clear answer.  In an environment such as this class, RISC 
has the advantage that the instruction set of the processor is simpler and easier to explain, with 
fewer special cases to address.  However, programs tend to be shorter with a CISC processor. 
 
Similarities 
 
Despite the architectural differences between the ATmega32 and the S12 detailed above, the two 
processors are actually remarkably similar in capabilities.  Both include virtually the same 
collection of input/output devices and I/O resources.  Both processors are members of large 
families of processors with varying resources, so to be specific, comparisons are made here with 
the particular family members that were used in the lab, the MC9S12DP256 (S12 for short) and 
the ATmega32.  Generally the MC9S12DP256 and the ATmega32 have identical resources, but 
the ATmega32 has fewer of each type of resource.  For example, compare internal memory: 
 Feature  MC9S12DP256 ATmega32 
 Static RAM  12K bytes  2K bytes 
 EEPROM  4K bytes  1K bytes 
 Flash memory  256K bytes  32K bytes 
 Internal input/output 1K bytes  64 bytes 
 
As can be seen above, the two processors contain the same types of memory and I/O access.  The 
S12 has much more than needed in instructional lab exercises.  The ATmega32 is a better fit. 
 
Comparing input/output resources, again the two processors include virtually the same types of 
devices.  The S12 again includes much more than needed in instructional lab exercises: 
 Feature    MC9S12DP256  ATmega32 
 Parallel ports    ten: 4-, 7-, and 8-bit  four: all 8-bit 
 Timer     one    three 
 Input Capture    eight channels   one channel 
 Output Compare   eight channels   four channels 
 Pulse Width Modulation  eight channels   three channels 
 Asynchronous Serial I/O  two systems   one system 
 Serial Peripheral Interface  three systems   one system 
 Inter-Integrated Circuit I/O  one system   one system 
 Controller Area Network  five systems   -- 
 Analog to Digital Conversion  sixteen analog inputs  eight analog inputs 
 
Overall, the ATmega32 provides students with examples of the same resources that the S12 
provides, so that lab exercises that were developed on the S12 were easily adapted to use the 
ATmega32 processor.  Many of the resources of the S12 were ignored and wasted in lab. 
 
Surprises 
 
Using the ATmega32 for the first time as the foundation for this class revealed two surprising 
defects in its design that should have been corrected during the processor’s design review 
process.  Nevertheless, somehow these bugs survived the review, and must be tolerated. 
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The ATmega32 is a “little endian” processor.  This means that when a mult-byte value is stored 
in consecutive locations in memory, the least significant byte of the value is stored at the lowest 
address.  This is the sensible byte order for those who grew up with Intel processors, because 
Intel processors are all “little endian.”  The S12 is a “big endian” processor, meaning that multi-
byte values are stored in the opposite order in memory.  This is the sensible byte order for those 
who grew up with Motorola processors.  Either byte order works fine, and programmers can 
learn to live with whichever order is supported by their processor.  The ATmega32 is “little 
endian” … MOSTLY!  For some unexplained reason, return addresses that are pushed on the 
stack by procedure calls and interrupt events are pushed in “big endian” order!  Usually the 
programmer does not care, and the order is unimportant, BUT in those rare situations where the 
program must access and/or manipulate the return address on the stack, the programmer must 
remember this weird anomaly in the ATmega32 and realize that those return addresses are on the 
stack in “big endian” order. 
 
The other defect in the ATmega32 design also has to do with stack addressing.  When data is 
“pushed” onto the stack, the data is stored at the location identified by the stack pointer register, 
and then the stack pointer is decremented.  This is known as “post-decrement” addressing 
because the register value changes after it is used.  When data is “popped” off the stack the stack 
pointer is first incremented and then data is read from the location identified by the stack pointer.  
This is known as “pre-increment” addressing because the register value changes before it is used.  
So far, all is fine, and the stack works without a problem using this strategy of “post-decrement” 
and “pre-increment” addressing.  However, it is also possible to address data memory using other 
registers that can be incremented or decremented as part of the access.  Unfortunately, the 
choices available are “pre-decrement” and “post-increment” only, the opposite of how accesses 
with the stack pointer work!  This is a stupid defect in the ATmega32 design, and means that if 
the programmer wants to, for example, implement a second stack using one of these other 
registers as the “stack pointer,” the “regular” stack and the “created” stack will work differently. 
 
Results 
 
The switch from the S12 processor to the ATmega32 processor in the “Microprocessor Systems” 
course has been completed successfully.  Despite fundamental differences in the architectures of 
the two processors, the lab provides the same experiences to students that were provided before 
the switch.  Because the two processors share nearly identical input/output resources, existing 
S12 lab experiments required only minor changes to work with the ATmega32.  Several 
advantages to using the ATmega32 have been noted: 

 8-bit data size is a better match to application needs, and less confusing 
 RISC instruction set is easier to describe, with fewer special cases to consider 
 Harvard architecture minimizes program corruption when programs misbehave 

Also, several disadvantages have been noted: 
 8-bit data size seems outdated to students 
 CISC instruction set provides more opportunities for creative programming 
 Princeton architecture makes system program development easier 

Has this been a productive change?  Some say yes, some say no.  Regardless, it is a change, and 
change helps keep the course content current and relevant.  Change is usually for the good! 
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