SEMI-ANALYTIC ESTIMATION OF THE RESPONSE OF HAND-HELD TOOLS AND ITS APPLICATIONS

Robin DeJager-Kennedy* and Jay Kim Department of Mechanical Engineering, University of Cincinnati Cincinnati, OH 45221-0072

Introduction

Many hand-arm models have been proposed by researchers for various purposes, which include lumped parameter or continuous models¹. In this paper it is shown that a semi-analytic response solution of a hand-held tool can be obtained by using a given hand-arm model and the tool vibration force estimated from measurement. This semi-analytic solution can be compared with the measured response of the hand-held tool. The approach can be used to compare performance of hand-arm models, and also to estimate the force transmitted to the hand.

Methods

Fig. 1 (a) shows a tool running free and suspended by a very soft bungee cord. Because the spring constant k is small, the response of the tool is:

$$X(\omega) = \frac{F(\omega)}{k - \omega^2 M_{tool}} \cong -\frac{F(\omega)}{\omega^2 M_{tool}} = -\frac{A(\omega)}{\omega^2}$$
(1)

From Eq. (1), $F(\omega) = M_{tool} A(\omega)$; therefore the tool vibration force can be estimated from the measured acceleration. It is noted that the tool vibration force is largely a result of unbalanced mass as illustrated in Fig. 1 (a).

Fig. 1 (b) describes the motion of a free-running tool held by a hand-arm modeled as a three D.O.F system. The equation of motion is described as follows;

$$[M]\{\ddot{x}(t)\} + [C]\{\dot{x}(t)\} + [K]\{x(t)\} = \{f(t)\}$$
 (2)

where, the mass corresponding to x_1 should be taken as M_1+M_{tool} . In the frequency domain, Eq. (2) becomes

$$[K - \omega^2 M + j\omega C]\{X(\omega)\} = \{F(\omega)\}$$
(3)

As mentioned above, $\{F(\omega)\} = [M_{tool} A(\omega), 0, 0]^T$ is obtained from measurement. Therefore,

$$\{\mathbf{X}(\omega)\} = [K - \omega^2 M + j\omega C]^{-1} \{\mathbf{F}(\omega)\} = [\mathbf{H}(\omega)] \{\mathbf{F}(\omega)\}$$
 (4)

 $\{X(\omega)\}\$ obtained as such can be considered as a semi-analytic solution because it is the response calculated from the theoretical model using the force estimated experimentally.

Discussions

This semi-analytically estimated response obtained by the above-explained procedure can be used to evaluate performance of a given hand-arm model. Fig.2(a) compares semi-analytically estimated accelerations in the x-direction obtained from 5 different lumped parameter models with the directly measured acceleration of an angle grinder operating hand-held. Figure 2(b) compares measured and simulated acceleration time histories of the tool. The approach can also be used to estimate the tool force transmitted to the hand-arm system. As illustrated in Fig. 1 (c), the force can be calculated by:

$$\mathbf{F}_{hand}(\omega) = \mathbf{Z}_1(\omega) \frac{\mathbf{A}(\omega)}{j\omega}$$
 (5)

where, $\mathbf{Z}_1(\omega)$ is the impedance calculated from the hand-arm model and $\mathbf{A}(\omega)$ is the measured acceleration of the tool.

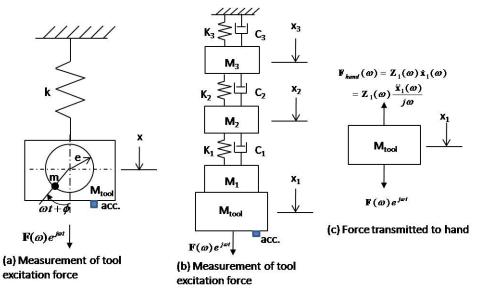


Fig. 1 Concept of semi-analytic estimation of the operating response of the tool and hand-transmitted force

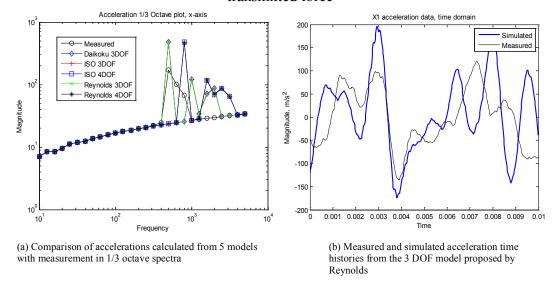


Fig. 2 Comparison of measured and semi-analytically estimated x-direction accelerations of an angle grinder.

References

- 1. N. Harada and M.H. Mahbub 2007 Presented at the 2nd International Workshop on diagnosis of handarm vibration syndrome. Göteborg, Sweden. Diagnosis of vascular injuries caused by hand-transmitted vibration
- 2.S. Rakheja, J. Z. Wu, R. G. Dong and A. W. Schopper 2002 in *Journal of Sound and Vibration*. A comparison of biodynamic models of the human hand-arm system for applications to hand-held power tools.